On démontre que si est une variété fortement pseudoconvexe telle que soit de type fini et son ensemble exceptionnel de dimension 1, alors est plongeable dans si et seulement si est une variété kählérienne; en outre cette condition est vérifiée si et seulement si ne contient aucune courbe effective qui est homologue à zéro.
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold , with 1- dimensional exceptional set and finitely generated second homology group , is embeddable in if and only if is Kähler, and this case occurs only when does not contain any effective curve which is a boundary.
@article{AIF_2001__51_1_99_0, author = {Alessandrini, Lucia and Bassanelli, Giovanni}, title = {On the embedding of 1-convex manifolds with 1-dimensional exceptional set}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {99-108}, doi = {10.5802/aif.1817}, zbl = {0966.32008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_1_99_0} }
Alessandrini, Lucia; Bassanelli, Giovanni. On the embedding of 1-convex manifolds with 1-dimensional exceptional set. Annales de l'Institut Fourier, Tome 51 (2001) pp. 99-108. doi : 10.5802/aif.1817. http://gdmltest.u-ga.fr/item/AIF_2001__51_1_99_0/
[1] Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom., Tome 37 (1993), pp. 95-121 | MR 1198601 | Zbl 0793.53068
[2] Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes, Sém. F. Norguet, Fonctions de plusieurs variables complexes IV, Springer (Lect. Notes Math.) Tome 807 (1980) | Zbl 0445.32019
[3] A cut-off theorem for plurisubharmonic currents, Forum Math., Tome 6 (1994), pp. 567-595 | Article | MR 1295153 | Zbl 0808.32010
[4] On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Comment. Math. Helv., Tome 60 (1985), pp. 458-465 | Article | MR 814151 | Zbl 0583.32047
[5] On 1-convex manifolds with 1-dimensional exceptional set (Collection of papers in memory of Martin Jurchescu), Rev. Roum. Math. Pures Appl., Tome 43 (1998), pp. 97-104 | MR 1655264 | Zbl 0932.32018
[6] On the Oka-Grauert principle for 1-convex manifolds, Math. Ann., Tome 310 (1998) no. 3, pp. 561-569 | Article | MR 1612254 | Zbl 0902.32011
[7] On Hulls of Meromorphy and a Class of Stein Manifolds, Ann. Scuola Norm. Sup., Tome XXVIII (1999), pp. 405-412 | Numdam | MR 1736523 | Zbl 0952.32008
[8] On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci. Kyushu Univ. Ser. A, Tome 28 (1974), pp. 135-146 | Article | MR 364681 | Zbl 0297.32012
[9] An intrinsec characterization of Kähler manifolds, Invent. Math., Tome 74 (1983), pp. 169-198 | Article | MR 723213 | Zbl 0553.32008
[10] On the existence of special metrics in complex geometry, Acta Math., Tome 143 (1983), pp. 261-295 | MR 688351 | Zbl 0531.53053
[11] The Levi problem for complex spaces II, Math. Ann., Tome 146 (1962), pp. 195-216 | Article | MR 182747 | Zbl 0131.30801
[12] Topological Vector Spaces, Springer, Graduate Texts in Mathematics, Tome 3 (1970) | Zbl 0217.16002
[13] Familien negativer Vektorbündel und 1-convexe Abbilungen, Abh. Math. Sem. Univ. Hamburg, Tome 47 (1978), pp. 150-170 | Article | MR 492393 | Zbl 0391.32011
[14] Embedding strongly -convex-concave spaces in , Several complex variables, Amer. Math. Soc., Providence R.I. (Proc. Sympos. Pure Math.) Tome Vol. XXX, Part 2 (1977), pp. 41-44 | Zbl 0366.32006
[15] Embedding theorems and Kählerity for 1-convex spaces, Comment. Math. Helv., Tome 57 (1982), pp. 196-201 | Article | MR 684112 | Zbl 0555.32012
[16] On the Kählerian geometry of 1-convex threefolds, Forum Math., Tome 7 (1995), pp. 131-146 | Article | MR 1316945 | Zbl 0839.32003