Soit une 1-forme différentielle locale sur une variété de dimension . Par définition, elle définit une structure locale singulière de contact si le lieu de ses points singuliers est nulle part dense. Dans un tel cas on peut définir la restriction (pullback) de sur l’hypersurface singulière . Nos théorèmes disent que, dans les catégories holomorphe, analytique réelle et , l’équation locale de Pfaff sur détermine l’équation locale de Pfaff sur , à un difféomorphisme près, si on exclut certaines dégénérescences de codimension infinie de . De plus, si est lisse, l’équation locale de Pfaff sur est déterminée, à un difféomorphisme près, par sa restriction sur et deux invariants complémentaires: une orientation et une connexion partielle. Ces invariants sont en général indépendants. Nos résultats impliquent une classification des singularités des équations de Pfaff locales en dimension 3.
A differential 1-form on a -dimensional manifolds defines a singular contact structure if the set of points where the contact condition is not satisfied, , is nowhere dense in . Then is a hypersurface with singularities and the restriction of to can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation generated by is determined, up to a diffeomorphism, by its restriction to , if we eliminate certain degenerated singularities of (in the holomorphic case they form a set of infinite codimension). We also define other invariants of local singular contact structures: orientations, a line bundle, and a partial connection. We study the problem when these invariants, together with the hypersurface and the restriction of the Pfaffian equation to , form a complete set of local invariants. Our results include complete solutions to this problem in dimension 3 and in the case where has no singularities.
@article{AIF_2001__51_1_237_0, author = {Jakubczyk, Bronislaw and Zhitomirskii, Michail}, title = {Local reduction theorems and invariants for singular contact structures}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {237-295}, doi = {10.5802/aif.1823}, mrnumber = {1821076}, zbl = {1047.53051}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_1_237_0} }
Jakubczyk, Bronislaw; Zhitomirskii, Michail. Local reduction theorems and invariants for singular contact structures. Annales de l'Institut Fourier, Tome 51 (2001) pp. 237-295. doi : 10.5802/aif.1823. http://gdmltest.u-ga.fr/item/AIF_2001__51_1_237_0/
[A] Methods of Control Theory in Nonholonomic Geometry, Proc. Int. Congress of Math. Zurich 1994, Birkhäuser, Basel, Tome Vol. 2 (1995), pp. 1473-1483 | Zbl 0848.93012
[AG] Symplectic geometry, Springer, Berlin, Encyclopaedia of Mathematical Sciences, Tome Vol. 4 (1990) | MR 1042758 | Zbl 0780.58016
[AI] Ordinary differential equations, Springer, Berlin, Encyclopaedia of Mathematical Sciences, Tome Vol. 1 (1988) | MR 970794 | Zbl 0659.58012
[BC3G] Exterior Differential Systems, Springer-Verlag, Mathematical Sciences Research Institute Publications, Tome Vol. 18 (1991) | MR 1083148 | Zbl 0726.58002
[BH] Rigidity of integral curves of rank 2 distributions, Inventiones Math., Tome 114 (1993), pp. 435-461 | Article | MR 1240644 | Zbl 0807.58007
[BJ] Commutative Rings; Dimension, Multiplicity and Homological Methods, Polish Scientific Publishers, Warsaw (1989) | MR 1084368 | Zbl 0685.13002
[Bo] Moduli of normal forms of singular points of vector fields on a plane, Functional Anal. Appl., Tome 11 (1977) no. 1, p. 57-58 | MR 482804 | Zbl 0384.57015
[E] Commutative Algebra, Springer-Verlag (1994) | MR 1322960 | Zbl 0819.13001
[JP] Singularities of k-tuples of vector fields, Dissertationes Mathematicae, Warsaw, Tome 213 (1984), pp. 1-64 | MR 744876 | Zbl 0565.58007
[JZh1] Singularities and normal forms of generic 2-distributions on 3-manifolds, Studia Math., Tome 113 (1995), pp. 223-248 | MR 1330209 | Zbl 0829.58007
[JZh2] Odd-dimensional Pfaffian equations; reduction to the hypersurface of singular points, Comptes Rendus Acad. Sci. Paris, Série I, Tome t. 325 (1997), pp. 423-428 | MR 1467099 | Zbl 0889.58006
[Lo] Introduction to Complex Analytic Geometry, Birkhäuser, Basel (1991) | Zbl 0747.32001
[LS] Shortest paths for sub-Riemannian metrics on rank 2 distributions, Mem. Amer. Math. Soc., Tome 118 (1995) no. 564 | Zbl 0843.53038
[Ma1] Sur les singularites des formes differentielles, Ann. Inst. Fourier, Tome 20 (1970) no. 1, pp. 95-178 | Article | Numdam | MR 286119 | Zbl 0189.10001
[Ma2] A letter to M. Zhitomirskii (1989)
[Mlg] Ideals of differentiable functions, Oxford University Press (1966) | MR 212575 | Zbl 0177.17902
[Mon] A Survey on Singular Curves in Sub-Riemannian Geometry, J. Dynamical and Control Systems, Tome 1 (1995) no. 1, pp. 49-90 | Article | MR 1319057 | Zbl 0941.53021
[Mou] Sur l'existence d'intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier, Tome 26 (1976) no. 2, pp. 171-220 | Article | Numdam | MR 415657 | Zbl 0328.58002
[MR] Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Ecole Norm. Sup., Tome 16 (1983), pp. 571-621 | Numdam | MR 740592 | Zbl 0534.34011
[MZh] Modules of vector fields, differential forms and degenerations of differential systems, Israel J. of Mathematics, Tome 95 (1996), pp. 411-428 | Article | MR 1418303 | Zbl 0866.58003
[P] Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff, Publications Mathématiques IHES, Bures-sur-Yvette (1985) no. 61, pp. 129-169 | Numdam | MR 783350 | Zbl 0568.58001
[Ro] Modèles locaux de champs et de formes, Astérisque, Tome 30 (1975), pp. 1-181 | MR 440570 | Zbl 0327.57017
[Ru] The Basic Theory of Power Series, Vieveg, Wiesbaden, Advanced Lectures in Mathematics (1993) | MR 1234937
[T] Idéaux des fonctions différentiables, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 71 (1972) | MR 440598 | Zbl 0251.58001
[VKL] Introduction to Geometry of Nonlinear Differential Equations (in Russian), Nauka, Moscow (1986) | MR 855844 | Zbl 0592.35002
[Zh1] Typical singularities of differential 1-forms and Pfaffian equations, AMS, Providence, Translations of Math. Monographs, Tome Vol. 113 (1992) | MR 1195792 | Zbl 0771.58001
[Zh2] Singularities and normal forms of odd-dimensional Pfaff equations, Functional Anal. Applic., Tome 23 (1989), pp. 59-61 | Article | MR 998435 | Zbl 0687.58001