The Dolbeault operator on Hermitian spin surfaces
[L'opérateur de Dolbeault sur les surfaces hermitiennes de spin]
Alexandrov, Bodgan ; Grantcharov, Gueo ; Ivanov, Stefan
Annales de l'Institut Fourier, Tome 51 (2001), p. 221-235 / Harvested from Numdam

On démontre l'annulation du noyau de l'opérateur de Dolbeault sur la racine carrée du fibré canonique d'une surface hermitienne de spin avec courbure scalaire positive. On obtient des minorations pour la première valeur propre de cet opérateur, dans le cas où la courbure scalaire conforme est non-négative.

We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.

Publié le : 2001-01-01
DOI : https://doi.org/10.5802/aif.1822
Classification:  53C15,  53C25,  53B35
Mots clés: surfaces hermitiennes, opérateur de Dirac, opérateur de Dolbeault, spineurs twisteurs
@article{AIF_2001__51_1_221_0,
     author = {Alexandrov, Bodgan and Grantcharov, Gueo and Ivanov, Stefan},
     title = {The Dolbeault operator on Hermitian spin surfaces},
     journal = {Annales de l'Institut Fourier},
     volume = {51},
     year = {2001},
     pages = {221-235},
     doi = {10.5802/aif.1822},
     mrnumber = {1821075},
     zbl = {0987.53011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2001__51_1_221_0}
}
Alexandrov, Bodgan; Grantcharov, Gueo; Ivanov, Stefan. The Dolbeault operator on Hermitian spin surfaces. Annales de l'Institut Fourier, Tome 51 (2001) pp. 221-235. doi : 10.5802/aif.1822. http://gdmltest.u-ga.fr/item/AIF_2001__51_1_221_0/

[1] V. Apostolov; J. Davidov; O. Mu¡Karov Self-dual Hermitian surfaces, Trans. Amer. Math. Soc., Tome 349 (1996), pp. 3051-3063 | Article | Zbl 0880.53053

[2] N. Aronszjan A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., Tome 35 (1957), pp. 235-249 | MR 92067 | Zbl 0084.30402

[3] M.F. Atiyah; R. Bott; A. Shapiro Clifford modules, Topology, Tome 3 (Suppl.1) (1964), pp. 3-38 | Article | MR 167985 | Zbl 0146.19001

[4] H. Baum; T. Friedrich; R. Grunewald; I. Kath Twistor and Killing spinors on Riemannian manifolds, Humboldt Universität, Berlin (Seminarbericht) Tome 108 (1990) | Zbl 0705.53004

[5] J.-M. Bismut A local index theorem for non-Kähler manifolds, Math. Ann., Tome 284 (1989), pp. 681-699 | Article | MR 1006380 | Zbl 0666.58042

[6] C. Boyer A note on hyperhermitian four manifolds, Proc. Amer. Math. Soc., Tome 102 (1988) no. 1, pp. 157-164 | MR 915736 | Zbl 0642.53073

[7] T. Friedrich Der erste Eigenwert des Dirac operators einer kompakten Riemannischen Manningfaltigkeit nichtnegativer Skalarkrümung, Math. Nachrichten, Tome 97 (1980), pp. 117-146 | Article | MR 600828 | Zbl 0462.53027

[8] T. Friedrich The classification of 4-dimensional Kähler manifolds with small eigenvalue of the Dirac operator, Math. Ann., Tome 295 (1993), pp. 565-574 | Article | MR 1204838 | Zbl 0798.53065

[9] P. Gauduchon Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, Sér. A, Tome 285 (1977), pp. 387-390 | MR 470920 | Zbl 0362.53024

[10] P. Gauduchon Fibrés hermitiens à endomorphisme de Ricci non négatif, Bul. Soc. Math. France, Tome 105 (1977), pp. 113-140 | Numdam | MR 486672 | Zbl 0382.53045

[11] P. Gauduchon La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., Tome 267 (1984), pp. 495-518 | Article | MR 742896 | Zbl 0523.53059

[12] P. Gauduchon Hermitian connections and Dirac operators, Bol. U. M. I. Sér. VII, Tome XI-B, supl. 2 (1997), pp. 257-289 | MR 1456265 | Zbl 0876.53015

[13] O. Hijazi Opérateurs de Dirac sur le variétés riemanniennes : minoration des valeurs propres (1984) (Thèse de 3e Cycle, École Polytechnique)

[14] N. Hitchin Harmonic spinors, Adv. Math., Tome 14 (1974), pp. 1-55 | Article | MR 358873 | Zbl 0284.58016

[15] K.-D. Kirchberg An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom., Tome 4 (1986), pp. 291-325 | Article | MR 910548 | Zbl 0629.53058

[16] K.-D. Kirchberg The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys., Tome 7 (1990), pp. 447-468 | MR 1131907 | Zbl 0734.53050

[17] K.-D. Kirchberg Properties of Kählerian twistor-spinors and vanishing theorems, Math. Ann., Tome 293 (1992), pp. 349-369 | Article | MR 1166126 | Zbl 0735.53051

[18] A. Moroianu Structures de Weyl admettant des spineurs parallèles, Bull. Soc. Math. France, Tome 124 (1996) no. 4, pp. 685-695 | Numdam | MR 1432061 | Zbl 0867.53013

[19] M. Pontecorvo Complex structures on Riemannian four-manifolds, Math. Ann., Tome 309 (1997), pp. 159-177 | Article | MR 1467652 | Zbl 0893.53026

[20] I. Vaisman Some curvature properties of complex surfaces, Ann. Mat. Pura Appl., Tome 132 (1982), pp. 1-18 | Article | MR 696036 | Zbl 0512.53058

[21] M. Wang Parallel spinors and parallel forms, Ann. Glob. Anal. Geom., Tome 7 (1989), pp. 59-68 | Article | MR 1029845 | Zbl 0688.53007