Soit un domaine pseudoconvexe qui admet une fonction plurisousharmonique d’exhaustion et Hölder continue. On note la fonction pluricomplexe de Green, pour . Dans cet article nous allons donner pour un ensemble compact une borne supérieure quantitative pour , à l’aide de la distance au bord de et du point . Comme application nous pouvons démontrer que, dans un domaine régulier (au sens de Diederich-Fornaess), la métrique de Bergman différentielle tend vers l’infini, pour , si tend vers un point du bord de . De plus, nous démontrons que l’ordre de croissance de , quand tend vers un point de type fini de façon non tangentielle, est toujours supérieur à , où est l’ordre d’extensibilité pseudoconvexe de en .
Let be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by . In this article we give for a compact subset a quantitative upper bound for the supremum in terms of the boundary distance of and . This enables us to prove that, on a smooth bounded regular domain (in the sense of Diederich-Fornaess), the Bergman differential metric tends to infinity, for , when tends to a boundary point. Furthermore, we prove that the order of growth of under nontangential approach of to a point of finite type, can be estimated from below by , where denotes the order of pseudoconvex extendability of at .
@article{AIF_2000__50_4_1205_0, author = {Diederich, Klas and Herbort, Gregor}, title = {Quantitative estimates for the Green function and an application to the Bergman metric}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {1205-1228}, doi = {10.5802/aif.1790}, mrnumber = {2001k:32058}, zbl = {0960.32022}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_4_1205_0} }
Diederich, Klas; Herbort, Gregor. Quantitative estimates for the Green function and an application to the Bergman metric. Annales de l'Institut Fourier, Tome 50 (2000) pp. 1205-1228. doi : 10.5802/aif.1790. http://gdmltest.u-ga.fr/item/AIF_2000__50_4_1205_0/
[1] Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., 41 (1993), 151-157. | MR 97j:32009 | Zbl 0795.32003
,[2] Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. | MR 2000b:32065 | Zbl 0916.32016
, ,[3] Comparison of the pluricomplex and the classical Green functions, Michigan Math. J., 45 (1998), 399-407. | MR 99e:32019 | Zbl 0960.32021
,[4] Jensen measures, hyperconvexity, and boundary behavior of the pluricomplex Green's function, Ann. Pol. Math., 71 (1999), 87-103. | Zbl 0955.32034
, , ,[5] Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194 (1987), 519-564. | MR 88g:32034 | Zbl 0595.32006
,[6] Pseudoconvex domains : Bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39 (1977), 129-141. | MR 55 #10728 | Zbl 0353.32025
, ,[7] Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. | MR 57 #16696 | Zbl 0378.32014
, ,[8] Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis 3 (1993), 237-267. | MR 94m:32033 | Zbl 0786.32016
, ,[9] Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (H. Skoda, J. M. Trépreau, ed.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. | MR 96b:32019 | Zbl 0845.32019
, ,[10] An estimate on the Bergman distance on pseudoconvex domains, Ann. of Math., 141 (1995), 181-190. | MR 95j:32039 | Zbl 0828.32002
, ,[11] Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in ℂn with smooth boundary, Trans. Amer. Math. Soc., 207 (1975), 219-240. | MR 51 #8468 | Zbl 0305.32011
,[12] The Bergman metric on hyperconvex domains, Math. Zeit., 232 (1999), 183-196. | MR 2000i:32020 | Zbl 0933.32048
,[13] On the pluricomplex Green function on pseudoconvex domains with a smooth boundary, Internat. J. of Math. (To appear). | Zbl 01629354
,[14] An introduction to complex analysis in several variables, North Holland, Amsterdam, 2nd ed. ed., 1973. | Zbl 0271.32001
,[15] Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240. | Numdam | MR 87d:32032 | Zbl 0584.32037
,