Soient une variété de Hadamard de courbure et un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de , le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.
Let be a Hadamard manifold with curvature and be a non elementary isometry group acting freely properly discontinuously on . We are interested in the topology of the leaves of the strong stable foliation on . We establish equivalences between the non arithmeticity of (i.e. the group generated by the length spectrum of is dense in ), the existence of a dense leaf in the non wandering set of and the topological mixing of the geodesic flow on its non wandering set. Our proof uses the action of on and the relation between cross-ratio and length spectrum.In the case when is not arithmetic, we prove that is geometrically finite if and only if leaves in are dense or are associated to bounded parabolic fixed points (such leaves are closed).
@article{AIF_2000__50_3_981_0, author = {Dal'bo, Fran\c coise}, title = {Topologie du feuilletage fortement stable}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {981-993}, doi = {10.5802/aif.1781}, mrnumber = {2001i:37045}, zbl = {0965.53054}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_3_981_0} }
Dal'bo, Françoise. Topologie du feuilletage fortement stable. Annales de l'Institut Fourier, Tome 50 (2000) pp. 981-993. doi : 10.5802/aif.1781. http://gdmltest.u-ga.fr/item/AIF_2000__50_3_981_0/
[B] Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Ens. Math., 41 (1995), 63-102. | MR 96f:58120 | Zbl 0871.58069
,[Bo1] Geometrical finiteness with variable negative curvature, Duke Math. Jour., Vol. 77, n° 1 (1995), 229-274. | MR 96b:53056 | Zbl 0877.57018
,[Bo2] Relatively hyperbolic groups, Preprint 1999.
,[D] Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Bras. Math., Vol. 30, n° 2 (1999). | Zbl 1058.53063
,[DP] Some negatively curved manifolds with cusps, mixing and counting, J. reine angew Math., 497 (1998), 141-169. | MR 99c:58124 | Zbl 0890.53043
, ,[DS] On a classification of limit points of infinitely generated Schottky groups, Prépublication Rennes, 1999. | Zbl 0963.30028
, ,[E1] Geodesic flows on negatively curved manifolds, I, Ann. of Math., Vol. 95, n° 3 (1973), 492-510. | MR 46 #10024 | Zbl 0217.47304
,[E2] Geodesic flows on negatively curved manifolds, II, Trans. of the A.M.S., Vol. 178 (1973), 57-82. | MR 47 #2636 | Zbl 0264.53027
,[E3] Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, 1996. | MR 98h:53002 | Zbl 0883.53003
,[GR] Products of random matrices : convergence theorem, Contemp. Math., Vol. 50 (1986), 31-53. | MR 87m:60024 | Zbl 0592.60015
- ,[H] Fuchsian group and transitive horocycles, Duke Math. J., 2 (1936), 530-542. | JFM 62.0392.03 | Zbl 0015.10201
,[K] Rigidity of rank one symmetric spaces and their product, (à paraître dans Topology). | Zbl 01708462
,[NW] Limit points via Schottky groups, LMS Lectures Notes, 173 (1992), 190-195. | MR 94a:20082 | Zbl 0767.30034
, ,[O] Sur la géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Revista Mathematica Iber. Amer., 8, n° 3 (1992). | MR 94a:58077 | Zbl 0777.53042
,[S] Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). | MR 80c:58015 | Zbl 0396.58014
,[S1] Parabolic fixed points of kleinian groups and the horospherical foliation on hyperbolic manifolds, Int. Journ. of Math., Vol. 8 n° 2 (1997), 289-299. | MR 98d:58144 | Zbl 0874.57027
,[S2] Fuchsian groups from the dynamical viewpoint, Jour. of Dyn. and Control System, 1 (1995), 427-445. | MR 96i:58140 | Zbl 0986.37033
,[T] Conical limit points and uniform convergence groups, J. reine angew Math., 501 (1998), 71-98. | MR 2000b:30067 | Zbl 0909.30034
,