Nous étendons la borne inférieure semi-classique due à Li-Yau pour la somme des premières valeurs propres du laplacien de Dirichlet aux laplaciens de Dirichlet avec un champ magnétique constant. Notre méthode repose sur une nouvelle inégalité pour les champs magnétiques constants.
The Li-Yau semiclassical lower bound for the sum of the first eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.
@article{AIF_2000__50_3_891_0, author = {Erd\"os, L\'aszl\'o and Loss, Michael and Vougalter, Vitali}, title = {Diamagnetic behavior of sums Dirichlet eigenvalues}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {891-907}, doi = {10.5802/aif.1777}, mrnumber = {2001g:35201}, zbl = {0957.35104}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_3_891_0} }
Erdös, László; Loss, Michael; Vougalter, Vitali. Diamagnetic behavior of sums Dirichlet eigenvalues. Annales de l'Institut Fourier, Tome 50 (2000) pp. 891-907. doi : 10.5802/aif.1777. http://gdmltest.u-ga.fr/item/AIF_2000__50_3_891_0/
[AHS78] Schrödinger operators with magnetic fields, I. General interactions, Duke Math. J., 45 (1978), 847-883. | MR 80k:35054 | Zbl 0399.35029
, and ,[B72] Convex operator functions, Math. USSR. Sb., 17 (1972), 269-277. | Zbl 0279.47006
,[CFKS87] Schrödinger operators (with application to Quantum Mechanics and Global Geometry), Springer 1987. | Zbl 0619.47005
, , and ,[HSU77] Domination of semigroups and generalizations of Kato's inequality, Duke Math. J., 44 (1977), 893-904. | MR 56 #16446 | Zbl 0379.47028
, and ,[Iv98] Microlocal Analysis and Precise Spectral Asymptotics, Springer, 1998. | MR 99e:58193 | Zbl 0906.35003
,[K72] Schrödinger operators with singular potentials, Isr. J. Math., 13 (1972), 135-148. | MR 48 #12155 | Zbl 0246.35025
,[L80] The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math., 36 (1980), 241-252. | MR 82i:35134 | Zbl 0445.58029
,[LL97] Analysis, Graduate Studies in Mathematics, Volume 14, American Mathematical Society (1997). | MR 98b:00004 | Zbl 0873.26002
, ,[LT75] Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., 35 (1975), 687.
, ,[LT76] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Math. Phys., Essays in Honor of Valentine Bargmann., Princeton (1976). | Zbl 0342.35044
, ,[LW99] Sharp Lieb-Thirring inequalities in high dimensions, to appear in Acta Math. | Zbl 01541221
, ,[LY83] On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. | MR 84k:58225 | Zbl 0554.35029
, ,[RS79] Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, 1979. | MR 80m:81085 | Zbl 0405.47007
, ,[S79] Functional integration and Quantum Physics, Academic Press, 1979. | MR 84m:81066 | Zbl 0434.28013
,[S77, 79] An abstract Kato inequality for generators of positivity preserving semigroups, Ind. Math. J., 26 (1977), 1067-1073. Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97-101. | MR 57 #1194 | Zbl 0389.47021
,