On considère un groupe algébrique simple non compact, défini sur un corps localement compact non discret, satisfaisant la propriété de Kazhdan. Étant donné un tel groupe , nous décrivons un ensemble de Kazhdan à deux éléments, et nous calculons sa meilleure constante de Kazhdan. Alors, répondant à une question de Serre et de la Harpe et Valette, nous obtenons des constantes de Kazhdan explicites pour tout réseau dans , pour un système générateur “géométrique” de la forme où est une boule de rayon , la dépendance de en fonction de étant décrite de façon explicite. De plus, pour tous les groupes de Lie de rang un, nous en déduisons des constantes de Kazhdan explicites, pour toute famille de représentations admettant une lacune spectrale. Nous discutons également plusieurs applications de nos méthodes, notamment une extension du théorème de Howe-Moore.
Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property . For any such group, , we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice in are obtained, for a “geometric” generating set of the form , where is a ball of radius , and the dependence of on is described explicitly. Furthermore, for all rank one Lie groups we derive explicit Kazhdan constants, for any family of representations which admits a spectral gap. Several applications of our methods are discussed as well, among them, an extension of Howe-Moore’s theorem.
@article{AIF_2000__50_3_833_0, author = {Shalom, Yehuda}, title = {Explicit Kazhdan constants for representations of semisimple and arithmetic groups}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {833-863}, doi = {10.5802/aif.1775}, mrnumber = {2001i:22019}, zbl = {0966.22004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_3_833_0} }
Shalom, Yehuda. Explicit Kazhdan constants for representations of semisimple and arithmetic groups. Annales de l'Institut Fourier, Tome 50 (2000) pp. 833-863. doi : 10.5802/aif.1775. http://gdmltest.u-ga.fr/item/AIF_2000__50_3_833_0/
[Ba] Unitary dual of Sp(n, 1), n ≥ 2, Duke Math. Journal, 48 (1981), 549-583. | MR 83e:22019 | Zbl 0496.22019
,[BaSw] On L2-cohomology and property (T) for automorphism groups of polyhedral cell complexes, GAFA, 7 (1997), 615-645. | MR 98m:20043 | Zbl 0897.22007
and ,[BB] The unitary spectrum for real rank one groups, Invent. Math., 72 (1983), 27-55. | MR 84k:22022 | Zbl 0561.22009
and ,[Be1] On uniqueness of invariant means, Proc. AMS, 126 (1998), 507-514. | MR 98d:43002 | Zbl 0885.43003
,[Be2] Restrictions of unitary representations to lattices and associated C*-algebras, J. Funct. Analysis, Vol 143 (1997), 33-41. | MR 97k:46066 | Zbl 0883.22006
,[BCJ] Kazhdan constants associated with Laplacian on connected Lie groups, J. Lie Theory, 8, no. 1 (1998), 95-110. | Zbl 0899.22012
, and ,[BS] Ramanujan duals II, Invent. Math., 106, (1991), 1-11. | Zbl 0774.11021
and ,[Bur] Kazhdan constants for SL3(ℤ), J. reine angew. Math., 413 (1991), 36-67. | MR 92c:22013 | Zbl 0704.22009
,[BM] On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL (3, ℝ), preprint. | Zbl 0947.22002
and ,[BZ] Representations of the group GLn (F) where F is a non-archimedian local field, Russian Math. Surveys, 31 (1976), 1-68. | Zbl 0348.43007
and ,[CHH] Almost L2 matrix coefficients, J. reine angew. Math., 387 (1988), 97-110. | MR 89i:22008 | Zbl 0638.22004
, and ,[CMS] Property (T) and Ã2 groups, Ann. Inst. Fourier, 44-1 (1994), 213-248. | Numdam | MR 95j:20024 | Zbl 0792.43002
, , ,[Co] Sur les coefficients des representations unitaires des groupes de Lie simples, Lect. Notes in Math, 739 (1979), 132-178. | MR 81e:22019 | Zbl 0417.22010
,[CS] The irreducibility of restrictions of unitary representations to lattices, J. reine angew. Math., 420 (1991), 85-98. | MR 93e:22019 | Zbl 0760.22014
and ,[Dix] C*-Algebras, North-Holland, Amsterdam, 1977. | Zbl 0372.46058
,[DG] Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sci. Paris, 277 (1973), A613-A615. | MR 48 #7332 | Zbl 0272.60005
and ,[DV] On diameters of orbits of compact groups in unitary representations, J. Austral. Math. Soc., Ser. A, 59 (1995), 308-312. | MR 96i:22008 | Zbl 0853.22004
and ,[Ey] L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. | Numdam | MR 37 #4208 | Zbl 0169.46403
,[Fe] Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268. | MR 27 #242 | Zbl 0138.07301
,[Fu] Random walks and discrete subgroups of Lie groups, in: Advances in Probability Vol. 1, ed. P. Ney, Marcel Dekker INC, New-York, 1971, 2-63. | MR 44 #1794 | Zbl 0221.22008
,[FS1] Sharp ergodic theorems for groups actions and strong ergodicity, Ergodic Theory and Dynamical Systems, 19, no. 4 (1999), 1037-1061. | MR 2000i:37001 | Zbl 0947.37002
and ,[FS2] Random walks on Hilbert spaces and Lyapunov exponents, in preparation.
and ,[Gre] Invariant Means on Topological Groups, Van Nostrand, New-York, 1969. | MR 40 #4776 | Zbl 0174.19001
,[Gro] Hyperbolic groups, in: Essays in Group Theory, S. Gersten ed., Springer, 1987, 75-265. | MR 89e:20070 | Zbl 0634.20015
,[GH] On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems, 3 (1997), 51-89. | MR 98d:20039 | Zbl 0949.20033
and ,[GV] Harmonic Analysis of Spherical Functions in Real Reductive Groups, Springer Verlag, 1988. | MR 89m:22015 | Zbl 0675.43004
and ,[HM] Asymptotic properties of unitary representations, J. Func. Anal., 32 (1979), 72-96. | MR 80g:22017 | Zbl 0404.22015
and ,[HRV1] On the spectrum of the sum of generators for a finitely generated group, Israel J. of Math., 81, no. 1-2 (1993), 65-96. | MR 94j:22007 | Zbl 0791.43008
, , ,[HRV2] On the spectrum of the sum of generators for a finitely generated group II, Colloq. Math., 65 (1993 vol 1), 87-102. | MR 94j:22008 | Zbl 0846.46036
, , ,[HT] Non-Abelian Harmonic Analysis, Springer Verlag, 1992. | MR 93f:22009 | Zbl 0768.43001
and ,[HV] La Propriété (T) de Kazhdan pour les Groupes Localement Compacts, Astérisque 175, Société Math. de France, 1989. | Zbl 0759.22001
and ,[Ho] On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, C.I.M.E., (1982), 223-331.
,[Kaz] On a connection between the dual space of a group and the structure of its closed subgroups, Func. Anal. Appl., 1 (1967), 63-65. | Zbl 0168.27602
,[Ke] Symmetric random walks on groups, Trans. AMS, 92 (1959), 336-354. | MR 22 #253 | Zbl 0092.33503
,[Kir] Elements of the Theory of Representations, Springer Verlag, New York, 1976. | MR 54 #447 | Zbl 0342.22001
,[KM1] Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Amer. Math., Soc. Transl., Ser. 2, 171 (1996), 141-172. | MR 96k:22022 | Zbl 0843.22027
and ,[KM2] Logarithm laws for flows on homogeneous spaces, Invent. Math., 138, no. 3 (1999), 451-494. | MR 2001i:37046 | Zbl 0934.22016
and ,[Kn] Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986. | MR 87j:22022 | Zbl 0604.22001
,[Ko] On the existence and irreducibility of certain series of representations, Bull. AMS, 75 (1969), 627-642. | MR 39 #7031 | Zbl 0229.22026
,[Li] The minimal decay of matrix coefficients for classical groups, in: Harmonic analysis and its applications in China (1995). | Zbl 0844.22021
,[Lub1] Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994. | MR 96g:22018 | Zbl 0826.22012
,[Lub2] Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem, Ann. of Math., 145 (1997), 441-452. | Zbl 0885.11037
,[LPS] Hecke operators and distributing points on S2, II, Comm. Pure and Applied Math., 40 (1987), 401-420. | MR 88m:11025b | Zbl 0648.10034
and ,[LW] Groups and expanders, in: “Expanding graphs” 95-109, DIMACS series Vol. 10, American Math., Soc., 1993, (Ed: J. Friedman). | MR 95b:05097 | Zbl 0787.05049
and ,[LZ] On the Decay of matrix coefficients for exceptional groups, preprint (1995). | Zbl 0854.22023
, ,[Mac] Induced representations of locally compact groups, Ann. of Math., 55 (1952), 101-139. | MR 13,434a | Zbl 0046.11601
,[Mar] Discrete Subgroups of Semisimple Groups, Springer Verlag, 1991. | MR 92h:22021 | Zbl 0732.22008
,[Mo1] Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178. | MR 33 #1409 | Zbl 0148.37902
,[Mo2] Exponential decay for correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras and mathematical physics, Conference in honor of G. W. Mackey, MSRI publications (1987), 163-180. | MR 89d:58102 | Zbl 0625.58023
,[Ne] Spectral transfer and pointwise ergodic theorems for semi-simple groups, preprint. | Zbl 0942.22007
,[Oh] Tempered subgroups and representations with minimal decay of matrix coefficients, preprint.
,[Sh1] Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. of AMS, (1999), 3387-3412. | MR 99m:22008 | Zbl 0932.22007
,[Sh2] Bounded generation and Kazhdan's property (T), IHES Publ. Math., to appear. | Numdam | Zbl 0980.22017
,[Sh3] Random ergodic theorems, invariant means and unitary representations, Tata Inst. Fund. Res. Stud. Math., 14 (Proceedings of the international conference on Lie groups, Bombay 1996) (1998) 273-314. | MR 2000i:22006 | Zbl 0946.22007
,[Sh4] Rigidity, unitary representations of semisimple groups. and fundamental groups of manifolds with rank one transformation group, Ann. of Math., to appear. | Zbl 0970.22011
,[SW] Growth rates, ℤp homology, and volumes of hyperbolic 3-manifolds, Trans. AMS, 331, no. 2 (1992), 895-917. | MR 93d:57002 | Zbl 0768.57001
and ,[Zi] Ergodic Theory and Semisimple Groups, Birkhäuser, 1985. | Zbl 0571.58015
,[Zu1] La propriete (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris, Ser I, 323, no. 5 (1996), 453-458. | MR 97i:22001 | Zbl 0858.22007
,[Zu2] Property (T) and Kazhdan constants for discrete groups, preprint (1999).
,