Soit une algèbre de Lie réductive et soit une sous-algèbre de Cartan. Un -module est dit module de poids si et seulement si il admet une décomposition , où chaque espace de poids est de dimension finie. Notre résultat principal est la classification de tous les -modules de poids simples. Également, leurs caractères sont déduits de formules des caractères des modules simples de la catégorie .
Let be a reductive Lie algebra and let be a Cartan subalgebra. A -module is called a weighted module if and only if , where each weight space is finite dimensional. The main result of the paper is the classification of all simple weight -modules. Further, we show that their characters can be deduced from characters of simple modules in category .
@article{AIF_2000__50_2_537_0, author = {Mathieu, Olivier}, title = {Classification of irreducible weight modules}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {537-592}, doi = {10.5802/aif.1765}, mrnumber = {2001h:17017}, zbl = {0962.17002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_2_537_0} }
Mathieu, Olivier. Classification of irreducible weight modules. Annales de l'Institut Fourier, Tome 50 (2000) pp. 537-592. doi : 10.5802/aif.1765. http://gdmltest.u-ga.fr/item/AIF_2000__50_2_537_0/
[B1] Groupes et algèbres de Lie, Ch 4-6, Herman, Paris, 1968.
,[B2] Groupes et algèbres de Lie, Ch 7-8, Herman, Paris, 1975.
,[BLL] Modules with bounded multiplicities for simple Lie algebras, Math. Z., 225 (1997), 333-353. | MR 98h:17004 | Zbl 0884.17004
, and ,[BHL] Simple Cn-modules with multiplicities 1 and applications, Canad. J. Phys., 72 (1994), 326-335. | MR 96d:17004 | Zbl 0991.17501
, and ,[BFL] Simple A2-modules with a finite-dimensional weight space, Comm. Algebra, 23 (1995), 467-510. | MR 95k:17005 | Zbl 0819.17007
, and ,[BL1] A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc., 299 (1987), 683-697. | MR 88b:17013 | Zbl 0635.17002
and ,[BL2] On Modules of Bounded Multiplicities For The Symplectic Algebras, Trans. amer. math. Soc., 351 (1999), 3413-3431. | MR 99m:17008 | Zbl 0930.17005
and ,[BL3] The torsion free Pieri formula, Canad. J. Math., 50 (1998), 266-289. | MR 99f:17005 | Zbl 0908.17005
and ,[CFO] On the support of irreducible non-dense modules for finite-dimensional Lie algebras, Preprint.
, and ,[DMP] On the structure of weight modules, to appear in Trans. Amer. Math. Soc. | Zbl 0984.17006
, and ,[D] Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. | MR 58 #16803a | Zbl 0308.17007
,[Fe] Lie algebra modules with finite dimensional weight spaces, I, TAMS, 322 (1990), 757-781. | MR 91c:17006 | Zbl 0712.17005
,[Fu] The weight representations of semisimple finite dimensional Lie algebras, Ph. D. Thesis, Kiev University, 1987.
,[GJ] Towards the Kazhdan-Lusztig conjecture, Ann. Sci. E.N.S., 14 (1981), 261-302. | Numdam | MR 83e:17009 | Zbl 0476.17005
, ,[Gab] Exposé au Séminaire Godement, Paris (1959-1960), unpublished.
,[Gai] Formes différentielles sur l'espace projectif réel sous l'action du groupe linéaire général, Comment. Math. Helv., 70 (1995), 375-382. | MR 96d:58004 | Zbl 0852.58001
,[Ja] Moduln mit einem hochsten Gewicht, Lect. Notes Math. 750 (1979). | MR 81m:17011 | Zbl 0426.17001
,[Jo1] Topics in Lie algebras, unpublished notes (1995).
,[Jo2] The primitive spectrum of an enveloping algebra, Astérisque, 173-174 (1989), 13-53. | MR 91b:17012 | Zbl 0714.17011
,[Jo3] Some ring theoretic techniques and open problems in enveloping algebras, in Non-commutative Rings, ed. S. Montgomery and L. Small, Birkhäuser (1992), 27-67. | MR 94j:16045 | Zbl 0752.17008
,[K] Lie algebra cohomology and the generalized Borel-Weil-Bott theorem, Ann. of Math., 74 (1961), 329-387. | MR 26 #265 | Zbl 0134.03501
,[Mi] On Lie algebras and some special functions of mathematical physics, Mem. A.M.S., 50 (1964). | MR 30 #3246 | Zbl 0132.29602
,[S] Kategorie O, perverse Garben und Moduln uber den Koinvarianten zur Weylgruppe, J. A.M.S., 3 (1990), 421-445. | Zbl 0747.17008
,