Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.
We determine all the dihedral CM fields with relative class number one, then all of them with class number one: there are 32 such non-abelian fields with class number one. This is the first example of resolution of the class number one problem for non-abelian normal CM-fields of a given Galois group.
@article{AIF_2000__50_1_67_0, author = {Lefeuvre, Yann}, title = {Corps di\'edraux \`a multiplication complexe principaux}, journal = {Annales de l'Institut Fourier}, volume = {50}, year = {2000}, pages = {67-103}, doi = {10.5802/aif.1747}, mrnumber = {2001g:11166}, zbl = {0952.11024}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2000__50_1_67_0} }
Lefeuvre, Yann. Corps diédraux à multiplication complexe principaux. Annales de l'Institut Fourier, Tome 50 (2000) pp. 67-103. doi : 10.5802/aif.1747. http://gdmltest.u-ga.fr/item/AIF_2000__50_1_67_0/
[1] Computing ray class groups, conductors and discriminants, Actes du Colloque ANTS II, Talence, 1996. | Zbl 0898.11046
, , ,[2] Note on Dirichlet's L-functions, Acta Arith., 1 (1936), 113-114. | JFM 61.0137.03 | Zbl 0011.06701
,[3] On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s,χ) for s > 0, J. reine angew. Math., 262/263 (1973), 415-419. | MR 48 #3895 | Zbl 0266.10036
, , ,[4] On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125-138. | MR 48 #253 | Zbl 0256.12010
, ,[5] Elementary theory of L-functions and Eisenstein series, London Math. Soc., Student Texts, Cambridge University Press, 26 (1993). | MR 94j:11044 | Zbl 0942.11024
,[6] Some analytic bounds for zeta functions and class numbers, Invent. Math., 55 (1979), 37-47. | MR 80k:12019 | Zbl 0474.12009
,[7] Corps à multiplication complexe diédraux principaux, Thèse, Univ. Caen, soutenue le 28 juin 1999.
,[8] The class number one problem for the dihedral CM-fields, to appear in the Proceedings of Conference on Algebraic Number Theory and Diophantine Analysis, Gras, 1998. | Zbl 0958.11071
, ,[9] Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120 (1994), 425-434. | MR 94d:11089 | Zbl 0795.11058
,[10] Corps quadratiques principaux à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith., 74 (1996), 121-140. | MR 96m:11098 | Zbl 0854.11058
,[11] Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, 50 (1998), 57-69. | MR 99a:11131 | Zbl 01185915
,[12] Upper bounds on |L(1,χ)| and applications, Canad. J. Math., 50 (1998), 795-815. | Zbl 0912.11046
,[13] Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (1999), 371-393. | MR 2000i:11172 | Zbl 0931.11050
,[14] Computation of L(0,χ) and of relative class numbers of CM-fields, Preprint Univ. Caen, 1998. | Zbl 0929.11065
,[15] Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67 (1994), 47-62. | MR 95g:11107 | Zbl 0809.11069
, ,[16] The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76 (3) (1998), 523-548. | MR 99c:11138 | Zbl 0891.11054
, ,[17] The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349 (1997), 3657-3678. | MR 97k:11149 | Zbl 0893.11045
, , ,[18] Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201-215. | MR 2000g:11101 | Zbl 01333799
, , ,[19] Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier Grenoble, 19, 1 (1969), 1-80. | Numdam | MR 41 #6820 | Zbl 0165.06502
,[20] Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 279-286. | MR 51 #12788 | Zbl 0306.12005
,[21] On conductors and discriminants, Algebraic number fields, Durham Symposium, 1975, A. Fröhlich, éd., Academic Press (1977), 377-407. | MR 56 #11961 | Zbl 0362.12006
,[22] Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Univ. Bordeaux, 1997.
,[23] Introduction to cyclotomic fields, Springer-Verlag, Graduate Texts in Mathematics 83, second edition, 1997. | MR 97h:11130 | Zbl 0966.11047
,[24] The determination of the imaginary abelian number fields with class number one, Math. Comp., 62 (1994), 899-921. | MR 94g:11096 | Zbl 0798.11046
,