Dans cet article nous étudions la propriété de commutativité pour l’entropie séquentielle topologique. Nous prouvons que si est un espace métrique compact et sont deux fonctions continues, alors pour toute suite croissance où et nous construisons un contre-exemple dans le cas général. Au passage, nous prouvons aussi que l’égalité est vraie si mais ne l’est pas nécessairement si est un espace métrique compact arbitraire.
In this paper we study the commutativity property for topological sequence entropy. We prove that if is a compact metric space and are continuous maps then for every increasing sequence if , and construct a counterexample for the general case. In the interim, we also show that the equality is true if but does not necessarily hold if is an arbitrary compact metric space.
@article{AIF_1999__49_5_1693_0, author = {Balibrea, Francisco and Pe\~na, Jose Salvador C\'anovas and L\'opez, V\'\i ctor Jim\'enez}, title = {Commutativity and non-commutativity of topological sequence entropy}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1693-1709}, doi = {10.5802/aif.1735}, mrnumber = {2001g:37015}, zbl = {0990.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_5_1693_0} }
Balibrea, Francisco; Peña, Jose Salvador Cánovas; López, Víctor Jiménez. Commutativity and non-commutativity of topological sequence entropy. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1693-1709. doi : 10.5802/aif.1735. http://gdmltest.u-ga.fr/item/AIF_1999__49_5_1693_0/
[1] Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. | MR 30 #5291 | Zbl 0127.13102
, and ,[2] Some results on entropy and sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (to appear). | Zbl 0942.28017
, and ,[3] Topological sequence entropy on the nonwandering set can be less than on the whole space: an interval counterexample, preprint.
, and ,[4] Dynamic complexity in duopoly games, J. Econom. Theory, 44 (1986), 40-56. | MR 87k:90045 | Zbl 0617.90104
and ,[5] Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086. | MR 91j:58107 | Zbl 0735.26005
and ,[6] Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350. | MR 50 #8482 | Zbl 0293.54043
,[7] Topological Dynamics, Amer. Math. Soc., 1955. | Zbl 0067.15204
and ,[8] An explicit description of all scrambled sets of weakly unimodal functions of type 2∞, Real. Anal. Exch., 21 (1995/1996), 1-26. | MR 97g:58109 | Zbl 0879.58044
,[9] Topological entropy of nonautononous dynamical systems, Random and Comp. Dynamics, 4 (1996), 205-233. | MR 98f:58126 | Zbl 0909.54012
and ,[10] Cuestiones sobre dinámica topológica de algunos sistemas bidimensionales y medidas invariantes de sistemas unidimensionales asociados, PhD thesis, Universidad de Murcia, 1998.
,[11] Smooth chaotic functions with zero topological entropy, Ergod. Th. and Dynam. Sys., 8 (1988), 421-424. | MR 90a:58118 | Zbl 0689.58028
and ,[12] On weakly* conditionally compact dynamical systems, Studia Math., 66 (1979), 25-32. | MR 81a:54043 | Zbl 0497.54039
,[13] An introduction to ergodic theory, Springer-Verlag, Berlin, 1982. | MR 84e:28017 | Zbl 0475.28009
,