On considère l’opérateur de Pauli autoadjoint dans , . Ici , , sont les matrices de Pauli, est le potentiel magnétique, est la constante de couplage, et est le potentiel électrique qui décroît à l’infini. On suppose que le champ magnétique engendré par satisfait à certaines conditions de régularité; en particulier, sa norme est minorée par une constante strictement positive et, dans le cas , sa direction est constante. On analyse le comportement asymptotique quand du nombre des valeurs propres de inférieures à , le paramètre étant fixé. De plus, si , on étudie l’asymptotique lorsque du nombre des valeurs propres de appartenant à l’intervalle avec .
We consider the Pauli operator selfadjoint in , . Here , , are the Pauli matrices, is the magnetic potential, is the coupling constant, and is the electric potential which decays at infinity. We suppose that the magnetic field generated by satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case , its direction is constant. We investigate the asymptotic behaviour as of the number of the eigenvalues of smaller than , the parameter being fixed. Furthermore, if , we study the asymptotics as of the number of the eigenvalues of situated on the interval with .
@article{AIF_1999__49_5_1603_0, author = {Raikov, Georgi D.}, title = {Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1603-1636}, doi = {10.5802/aif.1731}, mrnumber = {2000k:35227}, zbl = {0935.35109}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_5_1603_0} }
Raikov, Georgi D. Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1603-1636. doi : 10.5802/aif.1731. http://gdmltest.u-ga.fr/item/AIF_1999__49_5_1603_0/
[AHS] Schrödinger operators with magnetic fields. I. General interactions, Duke. Math. J., 45 (1978), 847-883. | MR 80k:35054 | Zbl 0399.35029
, , ,[B] On the spectrum of singular boundary value problems, Mat. Sbornik, 55 (1961) 125-174 (Russian); Engl. transl. in Amer. Math. Soc. Transl., (2) 53 (1966), 23-80. | MR 26 #463 | Zbl 0174.42502
,[E] Ground state density of the Pauli operator in the large field limit, Lett.Math.Phys., 29 (1993), 219-240. | MR 95a:81080 | Zbl 0850.81030
,[Hö] The Analysis of Linear Partial Differential Operators. IV, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. | Zbl 0612.35001
,[IT1] Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, Duke J.Math., 93 (1998), 535-574. | MR 2000d:35172 | Zbl 0948.35091
, ,[IT2] Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields, Ann. Inst. Fourier, 48-2 (1998), 479-515. | Numdam | MR 99e:35168 | Zbl 0909.35100
, ,[KMSz] On the eigenvalues of certain hermitian forms, Journ. Rat. Mech. Analysis, 2 (1953), 767-800. | MR 15,538b | Zbl 0051.30302
, , ,[R1] Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields, Commun. P.D.E., 23 (1998), 1583-1619. | MR 99i:35120 | Zbl 0919.35097
,[R2] Eigenvalue asymptotics for the Dirac operator in strong constant magnetic fields, Math. Phys. Electron. J., 5, n° 2 (1999), 22 p. http://www.ma.utexas.edu/mpej/. | MR 2000h:35127 | Zbl 0923.35112
,[Sh] Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. | MR 93g:35101 | Zbl 0742.47002
,[W] Eigenvalue distribution in certain homogeneous spaces, J. Func. Anal., 71 (1979), 139-147. | MR 80h:58054 | Zbl 0414.43010
,