Nous considérons l’équation de Schrödinger homogène avec un potentiel à longue portée et montrons que ses solutions satisfaisant une certaine borne a priori à l’infini peuvent s’exprimer asymptotiquement comme la somme d’ondes sphériques distordues rentrante et sortante. Les coefficients de ces ondes sont reliés par la matrice de la diffusion. Ceci généralise un résultat similaire précédemment établi pour un potentiel à courte portée
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
@article{AIF_1999__49_5_1581_0, author = {G\^atel, Yannick and Yafaev, Dimitri}, title = {On solutions of the Schr\"odinger equation with radiation conditions at infinity: the long-range case}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1581-1602}, doi = {10.5802/aif.1730}, mrnumber = {2000m:35044}, zbl = {0939.35050}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_5_1581_0} }
Gâtel, Yannick; Yafaev, Dimitri. On solutions of the Schrödinger equation with radiation conditions at infinity: the long-range case. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1581-1602. doi : 10.5802/aif.1730. http://gdmltest.u-ga.fr/item/AIF_1999__49_5_1581_0/
[1] Some new results in spectral and scattering theory of differential operators on Rn, Séminaire Goulaouic Schwartz, École Polytechnique, 1978. | Numdam | Zbl 0406.35052
,[2] Asymptotic properties of solutions of differential equations with simple characteristics, Journal d'Analyse Mathématique, 30 (1976), 1-38. | MR 57 #6776 | Zbl 0335.35013
, ,[3] Lower bounds at infinity for solutions of differential equations with constant coefficients, Israël J. Math., 16 (1973), 103-116. | MR 49 #5543 | Zbl 0271.35005
,[4] The analysis of Linear Partial Differential Operators I, Springer-Verlag, 1985. | Zbl 0601.35001
,[5] The analysis of Linear Partial Differential Operators IV, Springer-Verlag, 1985. | Zbl 0612.35001
,[6] Spectral Representation for Schrödinger Operators with Long-Range Potentials, J. Funct. Anal., 20 (1975), 158-177. | MR 52 #3751 | Zbl 0315.35067
,[7] A stationary approach to the existence and completeness of long-range wave operators, Int. Eq. Op. Theory, 5 (1982), 18-49. | MR 84f:35113 | Zbl 0496.35069
, ,[8] Limiting absorption method and absolute continuity for the Schrödinger operator, J. Math. Kyoto Univ., 12 (1972), 513-542. | MR 47 #628 | Zbl 0257.35022
, ,[9] Eikonal equations and spectral representations for long range Schrödinger Hamiltonians, J. Math. Kyoto Univ., 20 (1980), 243-261. | MR 81i:35042 | Zbl 0527.35022
,[10] Commutator Methods ans Besov Space estimates for Schrödinger operators, J. Operator Theory, 14 (1985), 181-188. | MR 86h:35096 | Zbl 0574.35022
, ,[11] Scattering metrics and geodesic flow at infinity, Invent. Math., 124 (1996), 389-436. | MR 96k:58230 | Zbl 0855.58058
, ,[12] Spectral representations for Schrödinger operators with long-range potentials, Lecture Notes in Math., 727, Springer, Berlin, 1979. | MR 81a:35083 | Zbl 0414.47012
,[13] On the S-matrix for Schrödinger operators with long-range potentials, J. reine Angew. Math., 314 (1980), 99-116. | MR 82h:35083 | Zbl 0422.35024
,[14] Wave operators for the Schrödinger equation, Theor. Math. Phys., 45 (1980), 992-998. | MR 82j:35119 | Zbl 0467.35076
,[15] On solutions of the Schrödinger equation with radiation conditions at infinity, Advances in Sov. Math., 7 (1991), 179-204. | MR 95h:35052 | Zbl 0753.35022
,[16] Functional analysis, Springer-Verlag, 1966. | Zbl 0126.11504
,