Une courbe réelle peut avoir des points doubles ordinaires de trois types différents : des points doubles réels à tangentes réelles, des points doubles réels isolés dans le domaine réel et des points doubles imaginaires. Soient des entiers tels que (où désigne la borne de Castelnuovo). On construit une courbe réelle irréductible de degré , non dégénérée dans l’espace projectif (i.e. non contenue dans un hyperplan) ayant pour seules singularités points doubles réels à tangentes réelles, points doubles réels isolés et paires de points doubles imaginaires conjugués.
A real curve may have three different types of nodes : real nodes with real branches, real nodes with imaginary branches and imaginary nodes. Let be nonnegative integers such that , where denotes the Castelnuovo bound. We give a construction of a real irreducible curve of degree , non degenerate in projective -space, having real nodes with real local branches, isolated real nodes, and pairs of conjugate imaginary nodes as its only singularities.
@article{AIF_1999__49_5_1439_0, author = {Pecker, Daniel}, title = {Sur la r\'ealit\'e des points doubles des courbes gauches}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1439-1452}, doi = {10.5802/aif.1725}, mrnumber = {2000m:14034}, zbl = {0933.14013}, mrnumber = {1723822}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_5_1439_0} }
Pecker, Daniel. Sur la réalité des points doubles des courbes gauches. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1439-1452. doi : 10.5802/aif.1725. http://gdmltest.u-ga.fr/item/AIF_1999__49_5_1439_0/
[B] Sulla “piccola variazione” di una curva piana algebrica reali, Rend. Rom. Ac. Lincei, 30 (1921). | JFM 48.0729.02
,[G] Generalization of a theorem of Brusotti for curves on a surface of second order, Functional Analysis and its applications, 14, n° 1 (1980), 15-18. | MR 83c:14019 | Zbl 0455.14022
,[H] Algebraic geometry, a first course, Graduate texts in Mathematics, Springer, 133 (1993). | Zbl 0779.14001
,[H.E] Curves in projective space (Chapter III in collaboration with D. Eisenbud), Les presses de l'université de Montréal, 1982. | Zbl 0511.14014
,[P1] Simple constructions of algebraic curves with nodes, Compositio Math., 87 (1993), 1-4. | Numdam | MR 94c:14021 | Zbl 0783.14013
,[P2] Un théorème de Harnack dans l'espace, Bull. Sci. Math., 118 (1994), 475-484. | MR 96c:14042 | Zbl 0829.14027
,[P3] On the geometric genus of projective curves, J. Pure and Applied Algebra, 136 (1999), 57-65. | MR 2000c:14038 | Zbl 0935.14020
,[P4] Note sur la réalité des points doubles des courbes gauches, C. R. Acad. Sci. Paris, 324, série I (1997), 807-812. | MR 98c:14020 | Zbl 0903.14010
,[R] Constructions d'hypersurfaces réelles (d'après Viro), exposé 763 (3), Séminaire Bourbaki, Astérisque, 216 (1993), 69-86. | Numdam | MR 94m:14074 | Zbl 0824.14045
,[S] Real plane algebraic curves with prescribed singularities, Topology, 32 (4) (1993), 845-856. | MR 95f:14049 | Zbl 0845.14017
,[T] On the geometric genera of projective curves, Math. Ann., 240 (1979), 213-221. | MR 80c:14022 | Zbl 0392.14005
,[V] Constructing real algebraic varieties with prescribed topology, Thèse, LOMI, Leningrad, English translation: Patchworking real algebraic varieties, Uppsala University, 1985.
,