Soit un espace métrique, muni d’une mesure borélienne telle que la mesure de la boule de centre et de rayon soit polynomiale en . Un amalgame est un espace de fonctions qui ressemble localement à et globalement à . On étudie les applications linéaires entre amalgames dont les noyaux se comportent comme quand et comme quand . On démontre un théorème de régularité du type Hardy–Littlewood–Sobolev pour l’opérateur de Laplace–Beltrami sur certaines variétés riemanniennes et pour certains opérateurs sous-elliptiques sur les groupes de Lie à croissance polynomiale.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.
@article{AIF_1999__49_4_1345_0, author = {Cowling, Michael and Meda, Stefano and Pasquale, Roberta}, title = {Riesz potentials and amalgams}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1345-1367}, doi = {10.5802/aif.1720}, mrnumber = {2000i:47058}, zbl = {0938.47027}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_4_1345_0} }
Cowling, Michael; Meda, Stefano; Pasquale, Roberta. Riesz potentials and amalgams. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1345-1367. doi : 10.5802/aif.1720. http://gdmltest.u-ga.fr/item/AIF_1999__49_4_1345_0/
[1] Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. | Numdam | MR 81g:43005 | Zbl 0365.46029
, and ,[2] Geometry of Manifolds, Academic Press, New York, 1964. | Zbl 0132.16003
and ,[3] Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386.
,[4] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. | MR 84b:58109 | Zbl 0493.53035
, and ,[5] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. | JFM 65.0398.01 | MR 1,313d | Zbl 0022.02304
,[6] Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. | MR 91k:47091 | Zbl 0738.47032
,[7] Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. | MR 93k:58213 | Zbl 0772.58055
,[8] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. | MR 96m:53035 | Zbl 0845.58054
, ,[9] Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. | MR 92c:47049 | Zbl 0745.47030
, ,[10] Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. | Numdam | MR 83d:58068 | Zbl 0465.53032
,[11] Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. | MR 90e:35123 | Zbl 0699.35006
,[12] Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. | MR 90k:58213 | Zbl 0759.58045
,[13] Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. | MR 91i:58142 | Zbl 0701.35004
and ,[14] Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR 51 #3719 | Zbl 0293.35012
and ,[15] Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. | MR 86f:46027 | Zbl 0593.43005
and ,[16] Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. | MR 51 #11013 | Zbl 0314.46029
,[17] Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | MR 36 #5526 | Zbl 0156.10701
,[18] Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. | MR 87d:53082 | Zbl 0554.53030
,[19] On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. | MR 87f:58156 | Zbl 0611.58045
and ,[20] Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. | MR 86k:46049 | Zbl 0578.32044
, and ,[21] Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. | Zbl 0747.47030
,[22] Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. | MR 93m:58122 | Zbl 0780.58042
,[23] Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. | MR 89i:22018 | Zbl 0634.22008
,[24] Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. | Zbl 0813.22003
, and ,[25] Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. | MR 54 #5502 | Zbl 0335.53041
,