Nous considérons des familles de modules de poids dominant unitarisables sur une demi-droite . Ces modules peuvent être réalisés comme des fonctions holomorphes à valeurs vectorielles sur un domaine borné symétrique . Les fonctions polynomiales constituent un sous-ensemble dense de chaque , . Dans ce travail nous comparons les normes d’un polynôme fixé dans deux espaces de Hilbert correspondant à deux paramètres différents. Comme application nous montrons que, pour tout , le module de vecteurs hyperfonctions peut être réalisé comme l’espace des fonctions holomorphes sur .
We consider families of unitarizable highest weight modules on a halfline . All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain , and the polynomial functions form a dense subset of each module , . In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all the module of hyperfunction vectors can be realized as the space of all holomorphic functions on .
@article{AIF_1999__49_4_1241_0, author = {Kr\"otz, Bernhard}, title = {Norm estimates for unitarizable highest weight modules}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1241-1264}, doi = {10.5802/aif.1716}, mrnumber = {2001i:22013}, zbl = {0930.22013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_4_1241_0} }
Krötz, Bernhard. Norm estimates for unitarizable highest weight modules. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1241-1264. doi : 10.5802/aif.1716. http://gdmltest.u-ga.fr/item/AIF_1999__49_4_1241_0/
[BrDe92] Vecteurs distributions H-Invariants pur les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein, Invent. Math., 109 (1992), 619-664. | MR 93m:22016 | Zbl 0785.22014
, and ,[ChFa98] Fonctions holomorphes à croissance modérée et vecteurs distributions, submitted. | Zbl 1057.22017
, and ,[Cl98] Distribution vectors for a highest weight representation, submitted.
,[EHW83] A classification of unitary highest weight modules, Proc. “Representation theory of reductive groups” (Park City, UT, 1982), 97-149 ; Progr. Math., 40 (1983), 97-143. | MR 86c:22028 | Zbl 0535.22012
, , and ,[EJ90] An intrinsic classification of unitary highest weight modules, Math. Ann., 288 (1990), 571-594. | MR 91m:17005 | Zbl 0725.17009
and ,[Fo89] Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. | MR 92k:22017 | Zbl 0682.43001
,[Hel78] Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978. | MR 80k:53081 | Zbl 0451.53038
,[HiÓl96] Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. | Zbl 0931.53004
and ,[HoTa92] Non-Abelian Harmonic Analysis, Springer, New York, Berlin, 1992. | MR 93f:22009 | Zbl 0768.43001
and ,[Jak83] Hermitean symmetric spaces and their unitary highest weight modules, J. Funct. Anal., 52 (1983), 385-412. | MR 85a:17004 | Zbl 0517.22014
,[Kö69] Topological Vector Spaces I, Grundlehren der Math. Wissenschaften, 159, Springer, Berlin, Heidelberg, New York, 1969. | Zbl 0179.17001
,[KNÓ97] Spherical Representations and Mixed Symmetric Spaces, Representation Theory, 1 (1997), 424-461. | MR 99a:22031 | Zbl 0887.22022
, , and ,[KNÓ98] Spherical Functions on Mixed Symmetric Spaces, submitted.
, , and ,[Ne94a] Realization of general unitary highest weight representations, Preprint Nr. 1662, TH Darmstadt, 1994.
,[Ne94b] Holomorphic representation theory II, Acta Math., 173:1 (1994), 103-133. | MR 96a:22025 | Zbl 0842.22004
,[Ne97] Smooth vectors for highest weight representations, submitted. | Zbl 01546576
,[Ne99] Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, to appear. | Zbl 0936.22001
,[Sa80] Algebraic Structures of Symmetric Domains, Publications of the Math. Soc. of Japan, 14, Princeton Univ. Press, 1980. | MR 82i:32003 | Zbl 0483.32017
,[Tr67] Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, London, 1967. | MR 37 #726 | Zbl 0171.10402
,