Soit un espace symétrique non compact avec décomposition d’Iwasawa . L’homomorphisme d’Harish-Chandra est un homomorphisme explicite entre l’algèbre des opérateurs différentiels sur et l’algèbre des polynômes sur invariante par rapport à l’action du groupe de Weyl de la paire . Le résultat principal de cet article est une généralisation dans le cas quantique de l’homomorphisme d’Harish-Chandra pour symétrique hermitien (classique).
Let a noncompact symmetric space with Iwasawa decomposition . The Harish-Chandra homomorphism is an explicit homomorphism between the algebra of invariant differential operators on and the algebra of polynomials on that are invariant under the Weyl group action of the pair . The main result of this paper is a generalization to the quantum setting of the Harish-Chandra homomorphism in the case of being an hermitian (classical) symmetric space
@article{AIF_1999__49_4_1179_0, author = {Baldoni, Welleda and Frajria, Pierluigi M\"oseneder}, title = {The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {1179-1214}, doi = {10.5802/aif.1713}, mrnumber = {2001d:17010}, zbl = {0932.17014}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_4_1179_0} }
Baldoni, Welleda; Frajria, Pierluigi Möseneder. The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair. Annales de l'Institut Fourier, Tome 49 (1999) pp. 1179-1214. doi : 10.5802/aif.1713. http://gdmltest.u-ga.fr/item/AIF_1999__49_4_1179_0/
[1] Parabolic subalgebras of quantized enveloping algebras, Preprint.
, and ,[2] Groupes et algèbres de Lie, Hermann, Paris, 1968.
,[3] The annihilator of invariant vectors for a quantized parabolic subalgebra, Preprint.
,[4] A guide to L-operators, Rend. Mat., (7) 18 (1998), 65-85. | MR 2000a:17019 | Zbl 0914.17007
,[5] Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978. | Zbl 0451.53038
,[6] Groups and geometric analysis, Academic Press, 1984.
,[7] Lectures on quantum groups, Graduate studies in Mathematics, vol. 6, A.M.S., 1995. | MR 96m:17029 | Zbl 0842.17012
,[8] Quantum groups and their primitive ideals, Springer, Berlin, 1995. | MR 96d:17015 | Zbl 0808.17004
,[9] Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra, 153 (1992), 289-317. | MR 94b:17023 | Zbl 0779.17012
and ,[10] The Capelli identity, tube domains and the generalized Laplace transform, Adv. in Math., 87 (1991), 71-92. | MR 92h:22033 | Zbl 0748.22008
and ,[11] Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. | MR 89k:17029 | Zbl 0651.17007
,[12] Quantum groups at root of 1, Geom. Dedicata, 35 (1990), 89-114. | MR 91j:17018 | Zbl 0714.17013
,[13] Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1 (1990), 193-225. | MR 90j:17039 | Zbl 0715.17015
, , and ,[14] The analytic continuation of the discrete series II, Trans. Amer. Math. Soc., 251 (1979), 19-37. | MR 81a:22009 | Zbl 0419.22018
,