François Jaeger a conjecturé en 1974 que tout graphe , cubique et cycliquement 4-connexe, est dual-hamiltonien, c’est-à-dire que l’on peut partitionner l’ensemble des sommets de en deux sous-ensembles tels que chacun induit un arbre de . Nous donnons plusieurs remarques sur cette conjecture.
François Jaeger conjectured in 1974 that every cyclically 4-connected cubic graph is dual hamiltonian, that is to say the vertices of can be partitioned into two subsets such that each subset induces a tree in . We shall make several remarks on this conjecture.
@article{AIF_1999__49_3_921_0, author = {Jackson, Bill and Whitehead, Carol A.}, title = {Some remarks on Jaeger's dual-hamiltonian conjecture}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {921-926}, doi = {10.5802/aif.1699}, mrnumber = {2000d:05072}, zbl = {0920.05048}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_3_921_0} }
Jackson, Bill; Whitehead, Carol A. Some remarks on Jaeger's dual-hamiltonian conjecture. Annales de l'Institut Fourier, Tome 49 (1999) pp. 921-926. doi : 10.5802/aif.1699. http://gdmltest.u-ga.fr/item/AIF_1999__49_3_921_0/
[1] A combinatorial decomposition theory, Canadian J. Math., 32 (1980), 734-765. | MR 83c:05098 | Zbl 0442.05054
and ,[2] Hamilton cycles in plane triangulations, submitted.
and ,[3] On vertex induced forests in cubic graphs, Proc. Fifth Southeastern Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg (1974), 501-512. | MR 50 #9650 | Zbl 0307.05102
,[4] Matroid Theory, Oxford Univ. Press, Oxford, 1992. | MR 94d:05033 | Zbl 0784.05002
,[5] Ensembles cycliquement stables et graphes cubiques, Cahiers du C.E.R.O., 17 (1975), 319-343. | MR 54 #5027 | Zbl 0314.05101
and ,[6] A theorem on planar graphs, Trans. Amer. Math. Soc., 82 (1956), 99-116. | MR 18,408e | Zbl 0070.18403
,[7] A theorem on graphs, Ann. of Math., 32 (1931), 378-390. | JFM 57.0727.03 | Zbl 0002.16101
,