Étant donnés un système de racines d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de .
Given a root system in one of the families A, B, C, D, F, G and the free abelian group that it generates, we compute explicitly the growth series of this group with respect to . The results can be interpreted in terms of the Ehrhart polynomial of the convex hull of
@article{AIF_1999__49_3_727_0, author = {Bacher, Roland and Harpe, P. de la and Venkov, Boris}, title = {S\'eries de croissance et polyn\^omes d'Ehrhart associ\'es aux r\'eseaux de racines}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {727-762}, doi = {10.5802/aif.1689}, mrnumber = {2000f:11082}, zbl = {0920.05076}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_3_727_0} }
Bacher, Roland; Harpe, P. de la; Venkov, Boris. Séries de croissance et polynômes d'Ehrhart associés aux réseaux de racines. Annales de l'Institut Fourier, Tome 49 (1999) pp. 727-762. doi : 10.5802/aif.1689. http://gdmltest.u-ga.fr/item/AIF_1999__49_3_727_0/
[BaG] Coordination sequences for root lattices and related graphs, Zeitschrift für Kristallographie, 212 (1997), 253-256. | MR 2000h:05110 | Zbl 0921.05058
et ,[BHV] Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 Sér. I (1997), 1137-1142. | MR 98k:52029 | Zbl 0917.52006
, et ,[Ben] Growth series of finite extensions of ℤn are rational, Inventiones Math., 73 (1983), 251-269. | MR 85e:20026 | Zbl 0508.20016
,[Bil] Growth of groups and graded algebras : erratum, Communications in Algebra, 13(3) (1985), 753-755. | MR 86e:20039b | Zbl 0558.20024
,[Bou] Groupes et algèbres de Lie (chapitres 4, 5 et 6), Hermann, 1968.
,[Br1] Points entiers dans les polytopes convexes, Séminaire Bourbaki, mars 1994, Astérisque 227, Soc. Math. France (1995), 145-169. | Numdam | MR 96e:11123 | Zbl 0847.52015
,[Br2] Polytopes convexes entiers, Gazette des mathématiciens, 67 (janvier 1996), 21-42. | MR 97d:52022 | Zbl 0878.52005
,[CoG] The book of numbers, Springer, 1996. | MR 98g:00004 | Zbl 0866.00001
et ,[CS1] The cell structure of certain lattices, in “Miscellanea Mathematics”, édité par P. Hilton, F. Hirzebruch et R. Remmert, Springer (1991), 72-107. | Zbl 0738.52014
et ,[CS2] Sphere packings, lattices and groups (second edition), Springer, 1993.
et ,[CS3] Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond., Ser. A, 453 (1997), 2369-2389. | MR 98j:11051 | Zbl 01089186
et ,[Cox] The polytopes with regular-prismatic vertex figures, Phil. Trans. Royal Soc. of London, Ser. A, 229 (1930), 329-425. | JFM 56.1119.03
,[Ebe] Lattices and codes (a course partially based on lectures by F. Hirzebruch), Vieweg, 1994. | Zbl 0805.11048
,[Ehr] Sur un problème de géométrie diophantienne linéaire, J. reine angew. Math., 226 (1967), 1-29. | MR 35 #4184 | Zbl 0155.37503
,[GKP] Concrete mathematics, Addison-Wesley, 1991.
, et ,[HiC] Geometry and the imagination, Chelsea Publishing Company, 1952 and 1983. | Zbl 0047.38806
and ,[Kla] Mathematical crystal growth II, Discrete Applied Math., 3 (1981), 113-117. | MR 83a:05018 | Zbl 0466.05007
,[KoM] Linear algebra and geometry, Gordon and Breach, 1989.
and ,[Pa1] Multiplicities of weights of some representations and convex polytopes, Functional Analysis and its Applications, 28-4 (1994), 293-295. | MR 95k:22017 | Zbl 0866.22015
,[Pa2] Cones of highest weight vectors, weight polytopes, and Lusztig's q-analog, Transformation Groups, 2 (1997), 91-115. | MR 98j:22017 | Zbl 0891.22013
,[PoS] Problems and theorems in analysis, volume I and II, Springer, 1972 and 1976.
and ,[Ser] Cours d'arithmétique, P.U.F., 1970. | MR 41 #138 | Zbl 0225.12002
,[Sta] Enumerative combinatorics, Volume I, Wadsworth and Brooks, 1986. | MR 87j:05003 | Zbl 0608.05001
,