Soient une surface, une sous-surface et deux entiers positifs. L’inclusion de dans induit un homomorphisme du groupe des tresses à brins de dans le groupe des tresses à brins de . Nous donnons dans un premier temps des conditions nécessaires et suffisantes pour que cet homomorphisme soit injectif et caractérisons le commensurateur, le normalisateur et le centralisateur de dans . Ensuite, nous déterminons le commensurateur, le normalisateur et le centralisateur de dans dans les cas où est un disque et où est large.
Let be a surface, let be a subsurface, and let be two positive integers. The inclusion of in gives rise to a homomorphism from the braid group with strings on to the braid group with strings on . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of in . Then we calculate the commensurator, the normalizer and the centralizer of in for large surface braid groups.
@article{AIF_1999__49_2_417_0, author = {Paris, Luis and Rolfsen, Dale}, title = {Geometric subgroups of surface braid groups}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {417-472}, doi = {10.5802/aif.1680}, mrnumber = {2000f:20059}, zbl = {0962.20028}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_2_417_0} }
Paris, Luis; Rolfsen, Dale. Geometric subgroups of surface braid groups. Annales de l'Institut Fourier, Tome 49 (1999) pp. 417-472. doi : 10.5802/aif.1680. http://gdmltest.u-ga.fr/item/AIF_1999__49_2_417_0/
[Ar1] Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. | JFM 51.0450.01
,[Ar2] Theory of braids, Annals of Math., 48 (1946), 101-126. | MR 8,367a | Zbl 0030.17703
,[Bi1] On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. | MR 38 #2764 | Zbl 0157.30904
,[Bi2] Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. | Zbl 0305.57013
,[Bi3] Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. | MR 90g:57013 | Zbl 0663.57008
,[Br] Cohomology of groups, Springer-Verlag, New York, 1982. | MR 83k:20002 | Zbl 0584.20036
,[Ch] On the algebraic braid group, Annals of Math., 49 (1948), 654-658. | MR 10,98e | Zbl 0033.01002
,[Co] Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. | Zbl 0682.55011
,[Ep] Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. | MR 35 #4938 | Zbl 0136.44605
,[FaN] Configuration spaces, Math. Scand., 10 (1962), 111-118. | MR 25 #4537 | Zbl 0136.44104
, ,[FoN] The braid groups, Math. Scand., 10 (1962), 119-126. | MR 27 #742 | Zbl 0117.41101
, ,[FaV] The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. | MR 25 #4539 | Zbl 0122.17804
, ,[FRZ] Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. | MR 97h:20047 | Zbl 0869.20024
, , ,[Ga] The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. | MR 40 #2051 | Zbl 0194.03303
,[Go] An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. | MR 48 #12501 | Zbl 0285.57002
,[GV] The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. | MR 38 #221 | Zbl 0169.55303
, ,[LS] Combinatorial group theory, Springer-Verlag, Berlin, 1977. | MR 58 #28182 | Zbl 0368.20023
, ,[Ro] Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. | MR 98j:20048 | Zbl 0897.20031
,[Sc] Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. | MR 42 #3786 | Zbl 0203.56302
,[Se] Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). | MR 57 #16426 | Zbl 0369.20013
,[Va] Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. | MR 32 #6440 | Zbl 0138.19103
,