Geometric subgroups of surface braid groups
Paris, Luis ; Rolfsen, Dale
Annales de l'Institut Fourier, Tome 49 (1999), p. 417-472 / Harvested from Numdam

Soient M une surface, N une sous-surface et nm deux entiers positifs. L’inclusion de N dans M induit un homomorphisme du groupe B n N des tresses à n brins de N dans le groupe B m M des tresses à m brins de M. Nous donnons dans un premier temps des conditions nécessaires et suffisantes pour que cet homomorphisme soit injectif et caractérisons le commensurateur, le normalisateur et le centralisateur de π 1 N dans π 1 M. Ensuite, nous déterminons le commensurateur, le normalisateur et le centralisateur de B n N dans B m M dans les cas où N est un disque et où N est large.

Let M be a surface, let N be a subsurface, and let nm be two positive integers. The inclusion of N in M gives rise to a homomorphism from the braid group B n N with n strings on N to the braid group B m M with m strings on M. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of π 1 N in π 1 M. Then we calculate the commensurator, the normalizer and the centralizer of B n N in B m M for large surface braid groups.

@article{AIF_1999__49_2_417_0,
     author = {Paris, Luis and Rolfsen, Dale},
     title = {Geometric subgroups of surface braid groups},
     journal = {Annales de l'Institut Fourier},
     volume = {49},
     year = {1999},
     pages = {417-472},
     doi = {10.5802/aif.1680},
     mrnumber = {2000f:20059},
     zbl = {0962.20028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1999__49_2_417_0}
}
Paris, Luis; Rolfsen, Dale. Geometric subgroups of surface braid groups. Annales de l'Institut Fourier, Tome 49 (1999) pp. 417-472. doi : 10.5802/aif.1680. http://gdmltest.u-ga.fr/item/AIF_1999__49_2_417_0/

[Ar1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. | JFM 51.0450.01

[Ar2] E. Artin, Theory of braids, Annals of Math., 48 (1946), 101-126. | MR 8,367a | Zbl 0030.17703

[Bi1] J.S. Birman, On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. | MR 38 #2764 | Zbl 0157.30904

[Bi2] J.S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. | Zbl 0305.57013

[Bi3] J.S. Birman, Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. | MR 90g:57013 | Zbl 0663.57008

[Br] K.S. Brown, Cohomology of groups, Springer-Verlag, New York, 1982. | MR 83k:20002 | Zbl 0584.20036

[Ch] W. Chow, On the algebraic braid group, Annals of Math., 49 (1948), 654-658. | MR 10,98e | Zbl 0033.01002

[Co] R. Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. | Zbl 0682.55011

[Ep] D.B.A. Epstein, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. | MR 35 #4938 | Zbl 0136.44605

[FaN] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand., 10 (1962), 111-118. | MR 25 #4537 | Zbl 0136.44104

[FoN] R.H. Fox, L. Neuwirth, The braid groups, Math. Scand., 10 (1962), 119-126. | MR 27 #742 | Zbl 0117.41101

[FaV] E. Fadell, J. Van Buskirk, The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. | MR 25 #4539 | Zbl 0122.17804

[FRZ] R. Fenn, D. Rolfsen, J. Zhu, Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. | MR 97h:20047 | Zbl 0869.20024

[Ga] F.A. Garside, The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. | MR 40 #2051 | Zbl 0194.03303

[Go] C.H. Goldberg, An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. | MR 48 #12501 | Zbl 0285.57002

[GV] R. Gillette, J. Van Buskirk, The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. | MR 38 #221 | Zbl 0169.55303

[LS] R.C. Lyndon, P.E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977. | MR 58 #28182 | Zbl 0368.20023

[Ro] D. Rolfsen, Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. | MR 98j:20048 | Zbl 0897.20031

[Sc] G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. | MR 42 #3786 | Zbl 0203.56302

[Se] J.-P. Serre, Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). | MR 57 #16426 | Zbl 0369.20013

[Va] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. | MR 32 #6440 | Zbl 0138.19103