Soit un espace symétrique réel et la décomposition correspondante de l’algèbre de Lie. À tout domaine ouvert et -invariant formé d’éléments réels ad-diagonalisables, on associe une variété complexe qui est une généralisation non-linéaire d’un domaine tube à base et nous avons une action naturelle de par des applications holomorphes. On montre que est une variété de Stein si et seulement si est convexe, que l’enveloppe d’holomorphie est schlicht et que les fonctions -invariantes plurisousharmoniques correspondent aux fonctions -invariantes convexes sur . Finalement on applique ces résultats pour démontrer l’existence d’une décomposition intégrale pour les espaces de Hilbert -invariants de fonctions holomorphes sur .
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant functions on . Finally we apply these results to obtain an integral decomposition for -invariant Hilbert spaces of holomorphic functions on .
@article{AIF_1999__49_1_177_0, author = {Neeb, Karl-Hermann}, title = {On the complex geometry of invariant domains in complexified symmetric spaces}, journal = {Annales de l'Institut Fourier}, volume = {49}, year = {1999}, pages = {177-225}, doi = {10.5802/aif.1671}, mrnumber = {2000i:32040}, zbl = {0921.22003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1999__49_1_177_0} }
Neeb, Karl-Hermann. On the complex geometry of invariant domains in complexified symmetric spaces. Annales de l'Institut Fourier, Tome 49 (1999) pp. 177-225. doi : 10.5802/aif.1671. http://gdmltest.u-ga.fr/item/AIF_1999__49_1_177_0/
[AL92] Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math., N.S., 3(4) (1992), 365-375. | MR 94a:32014 | Zbl 0777.32008
, and ,[DN93] On wedges in Lie triple systems and ordered symmetric spaces, Geometriae Ded., 46 (1993), 1-34. | MR 94m:17004 | Zbl 0781.53040
, and ,[Hel84] Groups and geometric analysis, Acad. Press, London, 1984.
,[HÓ96] Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. | Zbl 0931.53004
, ,[Hö73] An introduction to complex analysis in several variables, North-Holland, 1973. | Zbl 0271.32001
,[Kr97] The Plancherel Theorem for Biinvariant Hilbert Spaces, Publ. R.I.M.S., to appear. | Zbl 01439660
,[KN96] On hyperbolic cones and mixed symmetric spaces, Journal of Lie Theory, 6:1 (1996), 69-146. | MR 97k:17007 | Zbl 0860.22004
and ,[KNÓ97] Spherical Representations and Mixed Symmetric Spaces, Journal of Representation Theory, 1 (1997), 424-461. | MR 99a:22031 | Zbl 0887.22022
, and ,[Las78] Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Sci. Ec. Norm. Sup., 4e série, 11 (1978), 167-210. | Numdam | Zbl 0452.43011
,[Lo69] Symmetric Spaces I: General Theory, Benjamin, New York, Amsterdam, 1969. | MR 39 #365a | Zbl 0175.48601
,[MaMo60] Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. | Numdam | MR 23 #A1061 | Zbl 0094.28104
, and ,[Ne96a] Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum, 53 (1996), 230-261. | MR 97j:17033 | Zbl 0873.17009
,[Ne96b] On some classes of multiplicity free representations, Manuscripta Math., 92 (1997), 389-407. | MR 99e:22010 | Zbl 0882.43002
,[Ne97] Representation theory and convexity, submitted. | Zbl 0964.22004
,[Ne98] On the complex and convex geometry of Ol'shanskiĠ semigroups, Annales de l'Institut Fourier, 48-1 (1998), 149-203. | Numdam | MR 99e:22013 | Zbl 0901.22003
,[Ne99] Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, 1999, to appear. | Zbl 0936.22001
,