Nous obtenons des estimations à poids pour la solution canonique de l’équation dans , où est un domaine pseudoconvexe et une fonction strictement plurisousharmonique. Ces estimations sont ensuite utilisées pour démontrer des estimations ponctuelles pour le noyau du projecteur de Bergman dans . Le poids est utilisé pour obtenir un facteur dans l’estimation du noyau, où est la distance associée à la métrique kählérienne définie par .
Weighted estimates are obtained for the canonical solution to the equation in , where is a pseudoconvex domain, and is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in . The weight is used to obtain a factor in the estimate of the kernel, where is the distance function in the Kähler metric given by the metric form .
@article{AIF_1998__48_4_967_0,
author = {Delin, Henrik},
title = {Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation},
journal = {Annales de l'Institut Fourier},
volume = {48},
year = {1998},
pages = {967-997},
doi = {10.5802/aif.1645},
mrnumber = {99j:32027},
zbl = {0918.32007},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_967_0}
}
Delin, Henrik. Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation. Annales de l'Institut Fourier, Tome 48 (1998) pp. 967-997. doi : 10.5802/aif.1645. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_967_0/
[1] , The kernel function and conformal mapping, American Mathematical Society, Providence, R.I., revised ed., 1970, Mathematical Surveys, no V. | MR 58 #22502 | Zbl 0208.34302
[2] , Uniform estimates with weights for the ∂-equation, to appear in J. Geom. Analysis. | Zbl 0923.32014
[3] , Riemannian geometry - a modern introduction, vol. 108 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. | MR 95j:53001 | Zbl 0810.53001
[4] , On the ∂ equation in weighted L2 norms in ℂ1, J. Geom. Anal., 1 (1991), 193-230. | MR 92j:32066 | Zbl 0737.35011
[5] and , Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | MR 93h:32016 | Zbl 0759.32002
[6] and , An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2), 141 (1995), 181-190. | MR 95j:32039 | Zbl 0828.32002
[7] and , L2-cohomology and index theorem for the Bergman metric, Ann. of Math. (2), 118 (1983), 593-618. | MR 85f:32029 | Zbl 0532.58027
[8] , On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. | MR 94m:32034 | Zbl 0818.32006
[9] and , Theory of functions on complex manifolds, vol. 79 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. | MR 86a:32002 | Zbl 0726.32001
[10] , L2 estimates and existence for the ∂ operator, Acta Mathematica, 113 (1965), 89-152. | Zbl 0158.11002
[11] , The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.
[12] and , Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principales of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. | MR 87j:32001 | Zbl 0583.32001
[13] , Boundary behavior of the Bergman kernel function in ℂ2, Duke Math. J., 58 (1989), 499-512. | MR 91c:32017 | Zbl 0675.32020
[14] , On large values of L2 holomorphic functions, Math. Res. Lett., 3 (1996), 247-259. | MR 97e:32004 | Zbl 0865.32009
[15] , , , and , Estimates for the Bergman and Szegö kernels in ℂ2, Ann. of Math. (2), 129 (1989), 113-149. | MR 90g:32028 | Zbl 0667.32016
[16] and , On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. | MR 88g:32029 | Zbl 0625.32011
[17] and , Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. | MR 97d:53001 | Zbl 0830.53001
[18] , Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17 (1982), 55-138. | MR 83j:58039 | Zbl 0497.32025
[19] , The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis (Hayma, 1995), World Sci. Publishing, River Edge, NJ (1996), 577-592. | MR 98f:32033 | Zbl 0941.32021
[20] , , Differential analysis on complex manifolds, Prentice-Hall, 1973. | Zbl 0262.32005