Nous obtenons des estimations à poids pour la solution canonique de l’équation dans , où est un domaine pseudoconvexe et une fonction strictement plurisousharmonique. Ces estimations sont ensuite utilisées pour démontrer des estimations ponctuelles pour le noyau du projecteur de Bergman dans . Le poids est utilisé pour obtenir un facteur dans l’estimation du noyau, où est la distance associée à la métrique kählérienne définie par .
Weighted estimates are obtained for the canonical solution to the equation in , where is a pseudoconvex domain, and is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in . The weight is used to obtain a factor in the estimate of the kernel, where is the distance function in the Kähler metric given by the metric form .
@article{AIF_1998__48_4_967_0, author = {Delin, Henrik}, title = {Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {967-997}, doi = {10.5802/aif.1645}, mrnumber = {99j:32027}, zbl = {0918.32007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_967_0} }
Delin, Henrik. Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation. Annales de l'Institut Fourier, Tome 48 (1998) pp. 967-997. doi : 10.5802/aif.1645. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_967_0/
[1] The kernel function and conformal mapping, American Mathematical Society, Providence, R.I., revised ed., 1970, Mathematical Surveys, no V. | MR 58 #22502 | Zbl 0208.34302
,[2] Uniform estimates with weights for the ∂-equation, to appear in J. Geom. Analysis. | Zbl 0923.32014
,[3] Riemannian geometry - a modern introduction, vol. 108 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. | MR 95j:53001 | Zbl 0810.53001
,[4] On the ∂ equation in weighted L2 norms in ℂ1, J. Geom. Anal., 1 (1991), 193-230. | MR 92j:32066 | Zbl 0737.35011
,[5] Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | MR 93h:32016 | Zbl 0759.32002
and ,[6] An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2), 141 (1995), 181-190. | MR 95j:32039 | Zbl 0828.32002
and ,[7] L2-cohomology and index theorem for the Bergman metric, Ann. of Math. (2), 118 (1983), 593-618. | MR 85f:32029 | Zbl 0532.58027
and ,[8] On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. | MR 94m:32034 | Zbl 0818.32006
,[9] Theory of functions on complex manifolds, vol. 79 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. | MR 86a:32002 | Zbl 0726.32001
and ,[10] L2 estimates and existence for the ∂ operator, Acta Mathematica, 113 (1965), 89-152. | Zbl 0158.11002
,[11] The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.
,[12] Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principales of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. | MR 87j:32001 | Zbl 0583.32001
and ,[13] Boundary behavior of the Bergman kernel function in ℂ2, Duke Math. J., 58 (1989), 499-512. | MR 91c:32017 | Zbl 0675.32020
,[14] On large values of L2 holomorphic functions, Math. Res. Lett., 3 (1996), 247-259. | MR 97e:32004 | Zbl 0865.32009
,[15] Estimates for the Bergman and Szegö kernels in ℂ2, Ann. of Math. (2), 129 (1989), 113-149. | MR 90g:32028 | Zbl 0667.32016
, , , and ,[16] On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. | MR 88g:32029 | Zbl 0625.32011
and ,[17] Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. | MR 97d:53001 | Zbl 0830.53001
and ,[18] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17 (1982), 55-138. | MR 83j:58039 | Zbl 0497.32025
,[19] The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis (Hayma, 1995), World Sci. Publishing, River Edge, NJ (1996), 577-592. | MR 98f:32033 | Zbl 0941.32021
,[20] Differential analysis on complex manifolds, Prentice-Hall, 1973. | Zbl 0262.32005
, ,