Soit une variété kählérienne compacte de classe de Kähler entière et un fibré en droites hermitien holomorphe, dont la courbure est la forme symplectique sur . Soit un hamiltonien et l’opérateur de Toeplitz de multiplicateur agissant sur l’espace . On obtient des estimations sur les valeurs et fonctions propres de lorsque en termes du flot hamiltonien associé a . On étudie en détail le cas où est une orbite coadjointe entière d’un groupe de Lie.
Let be a compact Kähler manifold with integral Kähler class and a holomorphic Hermitian line bundle whose curvature is the symplectic form of . Let be a Hamiltonian, and let be the Toeplitz operator with multiplier acting on the space . We obtain estimates on the eigenvalues and eigensections of as , in terms of the classical Hamilton flow of . We study in some detail the case when is an integral coadjoint orbit of a Lie group.
@article{AIF_1998__48_4_1189_0,
author = {Borthwick, David and Paul, Thierry and Uribe, Alejandro},
title = {Semiclassical spectral estimates for Toeplitz operators},
journal = {Annales de l'Institut Fourier},
volume = {48},
year = {1998},
pages = {1189-1229},
doi = {10.5802/aif.1654},
mrnumber = {2000c:58048},
zbl = {0920.58059},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_1189_0}
}
Borthwick, David; Paul, Thierry; Uribe, Alejandro. Semiclassical spectral estimates for Toeplitz operators. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1189-1229. doi : 10.5802/aif.1654. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_1189_0/
[1] , Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.
[2] , General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.
[3] and , The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. | MR 90g:58075 | Zbl 0664.58045
[4] , , and , Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. | MR 96f:58067 | Zbl 0813.58026
[5] , , and , Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. | Zbl 0859.58015
[6] , On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. | MR 80j:58063 | Zbl 0398.47018
[7] , Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. | MR 51 #6498 | Zbl 0294.35020
[8] and , The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). | MR 85j:58141 | Zbl 0469.47021
[9] and , Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. | Numdam | Zbl 0344.32010
[10] , , and , Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). | Zbl 0719.53044
[11] , and , Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.
[12] , Enveloping Algebras, North-Holland, 1977.
[13] and , The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. | MR 53 #9307 | Zbl 0307.35071
[14] , Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. | MR 92k:22017 | Zbl 0682.43001
[15] and , Quantum intrinsically degenerate and classical secular perturbation theory, preprint.
[16] , Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. | MR 57 #1576 | Zbl 0341.58014
[17] and , Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. | MR 83m:58040 | Zbl 0503.58018
[18] and , Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. | MR 90e:58159 | Zbl 0686.58040
[19] and , Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291.
[20] , The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. | Zbl 0612.35001
[21] and , The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. | MR 97c:58160 | Zbl 0837.35106
[22] and , On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. | MR 97a:58189 | Zbl 0853.47038
[23] and , Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. | MR 99g:58122 | Zbl 0923.58055
[24] , Autour de l'approximation semi-classique, Birkhauser 1987. | MR 89g:81016 | Zbl 0621.35001
[25] and , Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. | MR 94d:58143 | Zbl 0772.58066
[26] , Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.