Semiclassical spectral estimates for Toeplitz operators
Borthwick, David ; Paul, Thierry ; Uribe, Alejandro
Annales de l'Institut Fourier, Tome 48 (1998), p. 1189-1229 / Harvested from Numdam

Soit X une variété kählérienne compacte de classe de Kähler entière et LX un fibré en droites hermitien holomorphe, dont la courbure est la forme symplectique sur X. Soit HC (X,) un hamiltonien et T k l’opérateur de Toeplitz de multiplicateur H agissant sur l’espace k =H 0 (X,L k ). On obtient des estimations sur les valeurs et fonctions propres de T k lorsque k en termes du flot hamiltonien associé a H. On étudie en détail le cas où X est une orbite coadjointe entière d’un groupe de Lie.

Let X be a compact Kähler manifold with integral Kähler class and LX a holomorphic Hermitian line bundle whose curvature is the symplectic form of X. Let HC (X,) be a Hamiltonian, and let T k be the Toeplitz operator with multiplier H acting on the space k =H 0 (X,L k ). We obtain estimates on the eigenvalues and eigensections of T k as k, in terms of the classical Hamilton flow of H. We study in some detail the case when X is an integral coadjoint orbit of a Lie group.

@article{AIF_1998__48_4_1189_0,
     author = {Borthwick, David and Paul, Thierry and Uribe, Alejandro},
     title = {Semiclassical spectral estimates for Toeplitz operators},
     journal = {Annales de l'Institut Fourier},
     volume = {48},
     year = {1998},
     pages = {1189-1229},
     doi = {10.5802/aif.1654},
     mrnumber = {2000c:58048},
     zbl = {0920.58059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_1189_0}
}
Borthwick, David; Paul, Thierry; Uribe, Alejandro. Semiclassical spectral estimates for Toeplitz operators. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1189-1229. doi : 10.5802/aif.1654. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_1189_0/

[1] V.I. Arnol'D, Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.

[2] F. A. Berezin, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.

[3] N. L. Balazs and A. Voros, The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. | MR 90g:58075 | Zbl 0664.58045

[4] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. | MR 96f:58067 | Zbl 0813.58026

[5] D. Borthwick, T. Paul, and A. Uribe, Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. | Zbl 0859.58015

[6] L. Boutet De Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. | MR 80j:58063 | Zbl 0398.47018

[7] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. | MR 51 #6498 | Zbl 0294.35020

[8] L. Boutet De Monvel and V. Guillemin, The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). | MR 85j:58141 | Zbl 0469.47021

[9] L. Boutet De Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. | Numdam | Zbl 0344.32010

[10] M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). | Zbl 0719.53044

[11] M. Degli Esposti, S. Graffi and S. Isola, Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.

[12] J. Dixmier, Enveloping Algebras, North-Holland, 1977.

[13] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. | MR 53 #9307 | Zbl 0307.35071

[14] G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. | MR 92k:22017 | Zbl 0682.43001

[15] S. Graffi and T. Paul, Quantum intrinsically degenerate and classical secular perturbation theory, preprint.

[16] V. Guillemin, Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. | MR 57 #1576 | Zbl 0341.58014

[17] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. | MR 83m:58040 | Zbl 0503.58018

[18] V. Guillemin and A. Uribe, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. | MR 90e:58159 | Zbl 0686.58040

[19] J.H. Hannay and M.V. Berry, Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291.

[20] L. Hörmander, The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. | Zbl 0612.35001

[21] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. | MR 97c:58160 | Zbl 0837.35106

[22] T. Paul and A. Uribe, On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. | MR 97a:58189 | Zbl 0853.47038

[23] T. Paul and A. Uribe, Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. | MR 99g:58122 | Zbl 0923.58055

[24] D. Robert, Autour de l'approximation semi-classique, Birkhauser 1987. | MR 89g:81016 | Zbl 0621.35001

[25] M. Taylor and A. Uribe, Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. | MR 94d:58143 | Zbl 0772.58066

[26] L. Yaffe, Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.