Nous démontrons un théorème relatif à la structure des variétés fermées, orientables, de dimension 5 avec groupe fondamental et deuxième classe de Stiefel-Whitney égale à zéro sur . Ce théorème est alors utilisé pour construire des structures de contact sur ces variétés en appliquant la chirurgie de contact à de faux espaces projectifs et certains quotients de par une involution.
We prove a structure theorem for closed, orientable 5-manifolds with fundamental group and second Stiefel-Whitney class equal to zero on . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain -quotients of .
@article{AIF_1998__48_4_1167_0, author = {Geiges, Hansj\"org and Thomas, Charles B.}, title = {Contact topology and the structure of 5-manifolds with $\pi \_1={\mathbb {Z}}\_2$}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {1167-1188}, doi = {10.5802/aif.1653}, mrnumber = {2000a:57069}, zbl = {0912.57020}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_1167_0} }
Geiges, Hansjörg; Thomas, Charles B. Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1167-1188. doi : 10.5802/aif.1653. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_1167_0/
[1] A Lefschetz fixed point formula for elliptic complexes : II, Applications, Ann. of Math. (2), 88 (1968), 451-491. | MR 38 #731 | Zbl 0167.21703
and ,[2] Cohomology of Groups, Springer, 1982. | MR 83k:20002 | Zbl 0584.20036
,[3] Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math., 1 (1990), 29-46. | MR 91k:32012 | Zbl 0699.58002
,[4] Contact structures on 1-connected 5-manifolds, Mathematika, 38 (1991), 303-311. | MR 93e:57042 | Zbl 0767.53025
,[5] Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc., 121 (1997), 455-464. | MR 98f:53027 | Zbl 0882.57007
,[6] Applications of contact surgery, Topology, 36 (1997), 1193-1220. | MR 98d:57044 | Zbl 0912.57019
,[7] Smooth homotopy projective spaces, Bull. Amer. Math. Soc., 75 (1969), 509-513. | MR 39 #964 | Zbl 0195.53302
,[8] O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer, 1968. | MR 37 #4825 | Zbl 0177.26401
and ,[9] Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1941/1942), 257-309. | JFM 68.0503.01 | MR 3,316e | Zbl 0027.09503
,[10] Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies, 88, Princeton University Press, 1977. | MR 58 #31082 | Zbl 0361.57004
and ,[11] Pin structures on low-dimensional manifolds, in : Geometry of Low-Dimensional Manifolds 2, (S.K. Donaldson and C.B. Thomas, eds.), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press (1990), 177-242. | MR 94b:57031 | Zbl 0754.57020
and ,[12] Differential Manifolds, Academic Press, 1993. | MR 95b:57001 | Zbl 0767.57001
,[13] Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer, 1971. | MR 45 #7747 | Zbl 0214.22501
,[14] Structures de contact sur certaines sphères exotiques, C.R. Acad. Sci. Paris, Sér. I, Math., 282 (1976), 591-593. | MR 53 #1471 | Zbl 0326.53044
and ,[15] Formes de contact sur les variétés de dimension 3, in : Proc. Liverpool Singularities Sympos. II (C.T.C. Wall, ed.), Lecture Notes in Math., 209, Springer (1971), 142-163. | MR 50 #3263 | Zbl 0215.23003
,[16] Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer (1972). | MR 50 #3236 | Zbl 0254.57010
and ,[17] Contact structures on (n-1)-connected (2n+1)-manifolds, Banach Center Publ., 18 (1986), 255-270. | MR 89b:53074 | Zbl 0642.57014
,[18] Surgery of non-simply-connected manifolds, Ann. of Math. (2), 84 (1966), 217-276. | MR 35 #3692 | Zbl 0149.20602
,[19] Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20 (1991), 241-251. | MR 92g:53028 | Zbl 0737.57012
,