Locally conformally Kähler metrics on Hopf surfaces
Gauduchon, Paul ; Ornea, Liviu
Annales de l'Institut Fourier, Tome 48 (1998), p. 1107-1127 / Harvested from Numdam

Une surface de Hopf primaire est une surface complexe compacte dont le revêtement universel est 2 -{(0,0)} et dont le groupe fondamental est le groupe cyclique engendré par une transformation (u,v)(αu+λv m ,βv), m, pour α,β,λ tels que αβ>1 et (α-β m )λ=0. Les surfaces de Hopf primaires sont difféomorphes à S 3 ×S 1 et n’admettent donc aucune métrique kählérienne. En revanche, il est bien connu qu’elles admettent des métriques localement conformément kählériennes, à forme de Lee parallèle, dans le cas où λ=0 et |α|=|β|. Nous construisons ici une métrique localement conformément kählérienne, à forme de Lee parallèle, sur toute surface de Hopf primaire de la classe 1 (λ=0). Nous montrons aussi que ces métriques sont obtenues, via une suspension riemannienne au-dessus de S 1 , en déformant la structure sasakienne canonique de S 3 par une forme quadratique hermitienne de 2 . Finalement, nous déduisons l’existence de métriques localement conformément kählériennes sur toute surface de Hopf primaire à l’aide d’un argument de déformation dû à C. LeBrun.

A primary Hopf surface is a compact complex surface with universal cover 2 -{(0,0)} and cyclic fundamental group generated by the transformation (u,v)(αu+λv m ,βv), m, and α,β,λ such that αβ>1 and (α-β m )λ=0. Being diffeomorphic with S 3 ×S 1 Hopf surfaces cannot admit any Kähler metric. However, it was known that for λ=0 and α=β they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class 1 (λ=0). We also show that these metrics are obtained via a Riemannian suspension over S 1 , by deforming the canonical Sasakian structure of S 3 by a Hermitian quadratic form of 2 . We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.

@article{AIF_1998__48_4_1107_0,
     author = {Gauduchon, Paul and Ornea, Liviu},
     title = {Locally conformally K\"ahler metrics on Hopf surfaces},
     journal = {Annales de l'Institut Fourier},
     volume = {48},
     year = {1998},
     pages = {1107-1127},
     doi = {10.5802/aif.1651},
     mrnumber = {2000g:53088},
     zbl = {0917.53025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_1107_0}
}
Gauduchon, Paul; Ornea, Liviu. Locally conformally Kähler metrics on Hopf surfaces. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1107-1127. doi : 10.5802/aif.1651. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_1107_0/

[1] V. Apostolov, P. Gauduchon, The Riemannian Goldberg-Sachs Theorem, Int. J. Math., 8 (1997), 421-439. | MR 98g:53080 | Zbl 0891.53054

[2] W. Barth, C. Peters, A. Van De Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band, 4, Springer-Verlag, 1984. | Zbl 0718.14023

[3] F. Belgun, Complex surfaces admitting no metric with parallel Lee form, preprint.

[4] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976. | MR 57 #7444 | Zbl 0319.53026

[5] L.C. De Andres, L.A. Cordero, M. Fernandez, J.J. Mencia, Examples of four dimensional locally conformal Kähler manifolds, Geometriae Dedicata, 29 (1989), 227-233. | MR 90b:53041 | Zbl 0676.53073

[6] L.A. Cordero, M. Fernandez, M. De Leon, Compact locally conformal Kähler nilmanifolds, Geometriae Dedicata, 21 (1986), 187-192. | MR 87j:53097 | Zbl 0601.53035

[7] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser (1998). | MR 99a:53081 | Zbl 0887.53001

[8] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. | MR 87a:53101 | Zbl 0536.53066

[9] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. Reine Angew. Math., 469 (1995), 1-50. | MR 97d:53048 | Zbl 0858.53039

[10] Géométrie des surfaces K3: modules et périodes. Séminaire Palaiseau, octobre 1981-janvier 1982, Astérisque, 126 (1985). | Zbl 0547.00019

[11] R. Harvey, H. Blaine Lawson, Jr, An intrinsic characterisation of Kähler manifolds, Inv. Math., 74 (1983), 139-150. | Zbl 0553.32008

[12] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963. | MR 27 #2945 | Zbl 0119.37502

[13] K. Kodaira, On the structure of compact complex analytic surfaces, II, American J. Math., 88 (1966), 682-722. | MR 34 #5112 | Zbl 0193.37701

[14] K. Kodaira, Complex structures on S1 ȕ S3, Proc. Nat. Acad. Sci. USA, 55 (1966), 240-243. | MR 33 #4955 | Zbl 0141.27402

[15] K. Kodaira, D.C. Spencer, On deformations of complex analytic structures, III, stability theorems for complex structures, Ann. of Math., 71 (1960), 43-77. | MR 22 #5991 | Zbl 0128.16902

[16] B. Kostant, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), 528-542. | MR 18,930a | Zbl 0066.16001

[17] C. Lebrun, Private letter to the first named author, September 22, 1992.

[18] H.C. Lee, A kind of even dimensional differential geometry and its application to exterior calculus, American J. Math., 65 (1943), 433-438. | MR 5,15h | Zbl 0060.38302

[19] P. Piccinni, Attempts of writing metrics on primary Hopf surfaces, private communication, October 1991.

[20] Y.-T. Siu, Every K3 surface is Kähler, Inv. Math., 73 (1983), 139-150. | MR 84j:32036 | Zbl 0557.32004

[21] S. Tanno, The standard CR structure on the unit tangent bundle, Tohoku Math. J., 44 (1992), 535-543. | MR 93k:53033 | Zbl 0779.53024

[22] F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino, 40 (1982), 81-92. | MR 84j:53073 | Zbl 0511.53068

[23] I. Vaisman, Some curvature properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 259 (1980), 439-447. | MR 81d:53044 | Zbl 0435.53044

[24] I. Vaisman, On locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. | MR 81j:53064 | Zbl 0446.53048

[25] I. Vaisman, Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255. | MR 84g:53096 | Zbl 0506.53032

[26] I. Vaisman, Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 45, 3 (1987), 117-123. | MR 91a:32039 | Zbl 0696.53039