Nous montrons que le facteur , de type engendré par la représentation régulière de , est isomorphe à son produit tensoriel avec le facteur hyperfini de type . Cela implique que le groupe unitaire de est contractile par rapport à la topologie définie par la norme hilbertienne naturelle.
We prove that the type factor generated by the regular representation of is isomorphic to its tensor product with the hyperfinite type factor. This implies that the unitary group of is contractible with respect to the topology defined by the natural Hilbertian norm.
@article{AIF_1998__48_4_1093_0, author = {Jolissaint, Paul}, title = {Central sequences in the factor associated with Thompson's group $F$}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {1093-1106}, doi = {10.5802/aif.1650}, mrnumber = {2000b:46108}, zbl = {0915.46052}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_4_1093_0} }
Jolissaint, Paul. Central sequences in the factor associated with Thompson’s group $F$. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1093-1106. doi : 10.5802/aif.1650. http://gdmltest.u-ga.fr/item/AIF_1998__48_4_1093_0/
[1] Deux actions de SL(2, ℤ), In Théorie ergodique, Monographie de l'E.N.S. Math., 1981. | MR 83m:46095 | Zbl 0497.46047
,[2] On actions of amenable groups on II1-factors, J. Funct. Anal., 91 (1990), 404-414. | MR 91i:46067 | Zbl 0726.46048
,[3] On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321 (1990), 117-128. | MR 90m:46103 | Zbl 0711.46048
,[4] Central sequences in subfactors II, Proc. Amer. Math. Soc., 121 (1994), 725-731. | MR 94i:46079 | Zbl 0814.46051
,[5] Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. | MR 86h:57033 | Zbl 0563.57022
, and ,[6] Introductory notes on Richard Thompson's groups, E.N.S. Math., 42 (1996), 215-256. | MR 98g:20058 | Zbl 0880.20027
, and , and ,[7] Outer conjugacy classes of automorphisms of factors, Ann. Scient. Ec. Norm. Sup., 8 (1975), 383-420. | Numdam | MR 52 #15031 | Zbl 0342.46052
,[8] Classification of injective factors, Ann. of Math., 104 (1976), 73-115. | MR 56 #12908 | Zbl 0343.46042
,[9] Deux nouveaux facteurs de type II1, Invent. Math., 7 (1969), 226-234. | MR 40 #1787 | Zbl 0174.18701
, and ,[10] Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. | MR 50 #8100 | Zbl 0321.22011
,[11] Combinatorial Group Theory and Topology, in Annals of Math. Studies 111, Princeton University Press, 1987. | Zbl 0611.00010
, and (eds),[12] Moyennabilité intérieure du groupe F de Thompson, C.R. Acad. Sci. Paris, Série I, 325 (1997), 61-64. | MR 98j:20049 | Zbl 0883.43003
,[13] Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461. | MR 43 #6737 | Zbl 0204.14902
,[14] Actions of discrete amenable groups on von Neumann algebras, Lect. Notes in Math. 1138, Springer Verlag, 1985. | MR 87e:46091 | Zbl 0608.46035
,[15] The topological structure of the unitary and automorphism groups of a factor, Comm. Math. Phys., 155 (1993), 93-101. | MR 94h:46092 | Zbl 0799.46074
and ,