Nous considérons des problèmes de théorie des invariants qui sont liés à la classification de quatre sous-espaces d’un espace vectoriel complexe de dimension . Nous utilisons la technique du “castling” pour retrouver rapidement des résultats de Howe et Huang sur les invariants. De plus, nous obtenons des informations sur les groupes d’isotropie principaux, l’équidimensionalité et le module des covariants.
We consider problems in invariant theory related to the classification of four vector subspaces of an -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.
@article{AIF_1998__48_3_667_0, author = {Schwarz, Gerry W. and Wehlau, David L.}, title = {Invariants of four subspaces}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {667-697}, doi = {10.5802/aif.1634}, mrnumber = {99i:14055}, zbl = {0899.20024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_3_667_0} }
Schwarz, Gerry W.; Wehlau, David L. Invariants of four subspaces. Annales de l'Institut Fourier, Tome 48 (1998) pp. 667-697. doi : 10.5802/aif.1634. http://gdmltest.u-ga.fr/item/AIF_1998__48_3_667_0/
[BGP] Coxeter functions and Gabriel's theorem, Russian Math. Surveys, 28 (1973), 17-32. | MR 52 #13876 | Zbl 0279.08001
, and ,[GP] Quadruples of subspaces of a finite-dimensional vector space, Dokl. Akad. Nauk SSSR, 197 (1971), 762-765 = Soviet Math. Doklady, 12 (1971), 535-539. | MR 44 #2762 | Zbl 0294.15001
and ,[HoHu] Projective invariants of four subspaces, Adv. in Math., 118 #2 (1996), 295-336. | MR 97b:13005 | Zbl 0852.15021
and ,[Huan] Invariants of sets of linear varieties, Proc. Natl. Acad. Sci. USA, 87 #12 (1990), 4557-4560. | MR 91i:05126 | Zbl 0717.15020
,[Kac] Infinite root systems, representations of graphs and invariant theory, Inv. Math., 56 (1980), 57-92. | Zbl 0427.17001
,[Kempf] Some quotient surfaces are smooth, Mich. Math. J., 27 (1980), 295-299. | MR 81m:14009 | Zbl 0465.14018
,[LuRi] A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. | MR 80k:14049 | Zbl 0444.14010
and ,[LuVu] Un théorème sur les orbites affines des groupes algébriques semi-simples, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1973), 527-535. | Numdam | Zbl 0276.14017
and ,[Na] Representation of a tetrad, Izv. Akad. Nauk SSSR, Ser., 31 (1967), 1361-1378 = Math. USSR Izv., 1 (1967), 1305-1322. | MR 36 #6400 | Zbl 0222.16028
,[Po] Stability criteria for actions of a semisimple group on a factorial manifold., Math. USSR Izv., 4 (1970), 527-535. | Zbl 0261.14011
,[Ring] The rational invariants of the tame quivers, Invent. Math., 58 (1980), 217-239. | MR 81f:16048 | Zbl 0433.15009
,[Sch1] Lifting smooth homotopies of orbit spaces, Publ. Math. IHES, 51 (1980), 37-135. | Numdam | MR 81h:57024 | Zbl 0449.57009
,[Sch2] Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12. | MR 80c:14008 | Zbl 0391.20033
,[Slod] Der Scheibensatz für algebraische Transformationsgruppen, in Algebraic Transformation Groups and Invariant Theory, DMV Seminar, 13 (1989), Birkhäuser Verlag, Basel-Boston, 89-113. | Zbl 0722.14031
,[Turn] The projective invariants of four medials, Proc. Edinb. Math. Soc. II, Ser. 7 (1942), 55-72. | MR 4,110a | Zbl 0063.07882
,[Wehl] Equidimensional Representations of 2-Simple groups, J. Algebra, 154 (2) (1993), 437-489. | MR 93k:14064 | Zbl 0820.20051
,