En définissant une nouvelle classe de nœuds dans les variétés de dimension 3, on obtient une démonstration plus classique du théorème de rigidité virtuelle des variétés hyperboliques de D. Gabai.
We introduce a class of knots and use it to prove a topological rigidity criterion for homotopy equivalences between 3-manifolds. As an application, we give a new proof of Gabai’s virtual rigidity theorem for hyperbolic 3-manifolds.
@article{AIF_1998__48_2_535_0, author = {Dubois, Jo\"el}, title = {N\oe uds Fox-r\'esiduellement nilpotents et rigidit\'e virtuelle des vari\'et\'es hyperboliques de dimension 3}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {535-551}, doi = {10.5802/aif.1628}, mrnumber = {2000a:57027}, zbl = {0899.57008}, mrnumber = {1625594}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_2_535_0} }
Dubois, Joël. Nœuds Fox-résiduellement nilpotents et rigidité virtuelle des variétés hyperboliques de dimension 3. Annales de l'Institut Fourier, Tome 48 (1998) pp. 535-551. doi : 10.5802/aif.1628. http://gdmltest.u-ga.fr/item/AIF_1998__48_2_535_0/
[Du] Nuds géométriquement-libres et rigidité topologique des variétés de dimension 3, Thèse, Université Toulouse-III, 1996.
,[Ep] The degree of map, Proc. London Math. Soc., (3) 16 (1966), 369-383. | MR 192475 | MR 33 #700 | Zbl 0148.43103
,[Ga1] Homotopy hyperbolic 3-manifolds are virtually hyperbolic, J. Amer. Math. Soc., 7 (1994), 193-198. | MR 1205445 | MR 94b:57016 | Zbl 0801.57009
,[Ga2] Foliations and the topology of 3-manifolds, J. Differential Geom., 18 (1983), 445-503. | MR 723813 | MR 86a:57009 | Zbl 0533.57013
,[GMT] Homotopy Hyperbolic 3-manifolds are hyperbolic, preprint. | MR 1973051 | Zbl 1052.57019
, , ,[He] 3-Manifolds, Ann. of Math. Stud., vol 86, Princeton Univ. Press, Princeton NJ, 1976. | MR 415619 | MR 54 #3702 | Zbl 0345.57001
,[Hi] Differential topology, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR 448362 | MR 56 #6669 | Zbl 0356.57001
,[HS] Homotopy equivalence and homeomorphism of 3-manifolds, Topology, 31 (1992), 493-517. | MR 1174254 | MR 94g:57021 | Zbl 0771.57007
, ,[Ja] Lecture on 3-manifold topology, CBMS Lecture Notes, No. 43, Amer. Math. Soc., Providence, RI, 1980. | MR 565450 | MR 81k:57009 | Zbl 0433.57001
,[Jo] Homotopy equivalences of 3-manifolds with boundaries, Lecture Note in Math. Vol. 761 (Springer, Berlin-Heidelberg-New York, 1979). | MR 82c:57005 | Zbl 0412.57007
,[JS] Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc., 220 (1980). | Zbl 0415.57005
, ,[Kr] A note on centrality in 3-manifold groups, School of Math. Sci., Queen Mary College, London E1 4NS (1989), 261-266.
,[Ma] Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., 111 (1935). | JFM 61.0102.02 | Zbl 0011.15201
,[Ma1] On isomorphic matrix representations of infinite groups, Math. Sb., 8 (50) (1940), 405-422. | MR 2,216d | Zbl 0025.00804
,[Sa] Geodesic knots in hyperbolic 3-manifold, Kobe J. Math., 8 (1991), 81-87. | MR 93a:57011 | Zbl 0749.57003
,[Sc1] The geometry of 3-manifolds, Bull. London Math. Soc., 15 (1983), 401-487. | MR 84m:57009 | Zbl 0561.57001
,[Sc2] There are no fake Seifert fibred spaces with infinite π1, Ann. of Math., (2) 117 (1983), 35-70. | MR 84c:57008 | Zbl 0516.57006
,[St] Homology and Central Series of Groups, J. Algebra, 2 (1965), 170-181. | MR 31 #232 | Zbl 0135.05201
,[Th1] Geometry and topology of 3-manifolds, Lecture Notes, Princeton University, Princeton NJ, 1978-1979.
,[Th2] Three dimensionnal manifolds, Kleinian groups, and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982) 357-381. | Zbl 0496.57005
,[Wa1] On irreducible 3-manifolds which are sufficiently large, Ann. of Math., (2) 87 (1968), 56-88. | MR 36 #7146 | Zbl 0157.30603
,[Wa2] On the determination of some bounded 3-manifold by their fundamental groups alone, Proc. of Int. Sym. of Topology, Hercy-Novi, Yugoslavia, 1968 : Beograd (1969), 331-332. | Zbl 0202.54702
,[Wr] Monotone mappings and degree one mappings between pl manifolds, Geometry Topology (Proc. Conf., Park City, Utah, 1974), Lecture Note in Math. Vol 438, Springer, Berlin (1975) 441-459. | MR 52 #15489 | Zbl 0309.55006
,