Cet article étudie le comportement asymptotique des valeurs propres négatives , quand , des opérateurs de Pauli avec un potentiel électrique qui tend vers à l’infini et avec un champ magnétique non constant, qui est supposé borné ou tendant vers à l’infini. Il est montré, en particulier, que , quand diminue plus rapidement que sous des hypothèses supplémentaires.
This article studies the asymptotic behavior of the number of the negative eigenvalues as of the two dimensional Pauli operators with electric potential decaying at and with nonconstant magnetic field , which is assumed to be bounded or to decay at . In particular, it is shown that , when decays faster than under some additional conditions.
@article{AIF_1998__48_2_479_0, author = {Iwatsuka, Akira and Tamura, Hideo}, title = {Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {479-515}, doi = {10.5802/aif.1626}, mrnumber = {99e:35168}, zbl = {0909.35100}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_2_479_0} }
Iwatsuka, Akira; Tamura, Hideo. Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields. Annales de l'Institut Fourier, Tome 48 (1998) pp. 479-515. doi : 10.5802/aif.1626. http://gdmltest.u-ga.fr/item/AIF_1998__48_2_479_0/
[1] Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, 19 (1979), 2461-2462.
and ,[2] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), 847-883. | MR 80k:35054 | Zbl 0399.35029
, and ,[3] L'asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys., 105 (1986), 327-335. | MR 87k:58273 | Zbl 0612.35102
,[4] Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987. | Zbl 0619.47005
, , and ,[5] Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals, Operator Theory, Advances and Applications, 78 (1994), Birkhäuser Verlag, 127-134. | MR 96i:81068 | Zbl 0833.35117
,[6] Magnetic Lieb-Thirring inequalities, Commun. Math. Phys., 170 (1995), 629-668. | MR 96i:81069 | Zbl 0843.47040
,[7] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-Thirring type estimate, preprint, 1996.
and ,[8] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys., 188 (1997), 599-656. | Zbl 0909.47052
and ,[9] Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., 1969. | MR 39 #7447 | Zbl 0181.13504
and ,[10] Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, preprint, 1997 (to be published in Duke Math. J.). | MR 99e:35167 | Zbl 0932.35159
and ,[11] On the spectral theory of the Schrödinger operator with electromagnetic potential, Pseudo-differential Calculus and Mathematical Physics, Adv. Partial Differ. Eq., Academic Press, 5 (1994), 298-390. | MR 96e:35122 | Zbl 0813.35065
and ,[12] Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. | MR 93g:35101 | Zbl 0742.47002
,[13] Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field I, J. Soviet Math., 35 (1986), 2201-2211. | Zbl 0643.35028
,[14] On the Lieb-Thirring estimates for the Pauli operator, Duke Math. J., 82 (1996), 607-637. | MR 97e:81030 | Zbl 0882.47056
,[15] Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., 25 (1988), 633-647. | MR 90c:35159 | Zbl 0731.35073
,