On propose une définition de la cohomologie de Leibniz, , pour les variétés différentiables. Alors devient une version non-commutative de la cohomologie de Gelfand-Fuks. Les calculs de se réduisent à ceux des champs de vecteurs formels, et peuvent être identifiés avec des invariants de feuilletages.
We propose a definition of Leibniz cohomology, , for differentiable manifolds. Then becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
@article{AIF_1998__48_1_73_0,
author = {Lodder, Jerry M.},
title = {Leibniz cohomology for differentiable manifolds},
journal = {Annales de l'Institut Fourier},
volume = {48},
year = {1998},
pages = {73-95},
doi = {10.5802/aif.1611},
mrnumber = {99b:17003},
zbl = {0912.17001},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1998__48_1_73_0}
}
Lodder, Jerry M. Leibniz cohomology for differentiable manifolds. Annales de l'Institut Fourier, Tome 48 (1998) pp. 73-95. doi : 10.5802/aif.1611. http://gdmltest.u-ga.fr/item/AIF_1998__48_1_73_0/
[B] , Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics, 279 (1972), 1-94. | MR 50 #14777 | Zbl 0241.57010
[BS] , , The Cohomology of the Vector Fields on a Manifold, Topology, 16 (1977), 285-298. | MR 58 #31102 | Zbl 0387.57012
[CE] , , Cohomology Theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124. | MR 9,567a | Zbl 0031.24803
[C] , Géométrie Non Commutative, Inter Editions, Paris, 1990. | Zbl 0745.46067
[F] , Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, 1986 (A.B. Sosinskii translator). | MR 88b:17001 | Zbl 0667.17005
[GK] , , Koszul Duality for Operads, Duke Jour. Math., 76-1 (1994), 203-272. | MR 96a:18004 | Zbl 0855.18006
[Gb] , Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki, 421 (1972). | Numdam | Zbl 0296.17010
[Gw] , Relative Algebraic K-Theory and Cyclic Homology, Annals of Math., 124 (1986), 347-402. | MR 88b:18008 | Zbl 0627.18004
[H] , Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 412 (1972). | Numdam | Zbl 0257.57011
[HS] , Cohomology of Lie Algebras, Ann. of Math., 57 (1953), 591-603. | MR 14,943c | Zbl 0053.01402
[K] , Vertex Algebras for Beginners, Am. Math. Soc., Univ. Lecture Series, 10 (1996). | Zbl 0861.17017
[K-S] , From Poisson Algebras to Gerstenhaber Algebra, Ann. Inst. Fourier, Grenoble, 46-5 (1996), 1243-1274. | Numdam | MR 98b:17032 | Zbl 0858.17027
[L1] , Cyclic Homology, Grund. Math. Wissen. 301, Springer Verlag, 1992. | MR 94a:19004 | Zbl 0780.18009
[L2] , Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. | MR 95a:19004 | Zbl 0806.55009
[L3] , Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77-2 (1995), 189-196. | MR 96m:17001 | Zbl 0859.17015
[L4] , La Renaissance des Opérades, Séminaire Bourbaki, 792 (1994-1995). | Numdam | Zbl 0866.18007
[LP] , , Universal Enveloping Algebras of Leibniz Algebras and (Co)-homology, Math. Annalen, 296 (1993), 139-158. | MR 94j:17003 | Zbl 0821.17022
[P] , On Leibniz Homology, Ann. Inst. Fourier, Grenoble, 44-2 (1994), 401-411. | Numdam | MR 96f:17030 | Zbl 0821.17023
[S] , A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Perish, Inc. (1979). | Zbl 0439.53001
[W] , The Classical Groups, Princeton University Press, 1946.