Nous étudions les variétés complexes compactes qui possèdent un revêtement qui soit un domaine dans l’espace projectif de dimension dont le complémentaire est un ensemble non vide de mesure de Hausdorff de dimension égale à zéro. De telles variétés n’existent que si . Elles n’appartiennent pas à la classe , et par conséquent elles ne sont ni Kähler ni Moishezon, leur dimension de Kodaira est , leurs groupes fondamentaux sont des groupes de Klein généralisés et elles sont connexes par chaînes rationnelles. Nous considérons aussi les deux classes principales d’exemples connus en dimension 3 : les variétés de Blanchard, pour lesquels est une droite, et les revêtements généralisés de Schottky construits par Nori. Nous déterminons leur corps de fonctions méromorphes et décrivons les surfaces qu’elles contiennent.
We study compact complex manifolds covered by a domain in -dimensional projective space whose complement is non-empty with -dimensional Hausdorff measure zero. Such manifolds only exist for . They do not belong to the class , so they are neither Kähler nor Moishezon, their Kodaira dimension is , their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.
@article{AIF_1998__48_1_223_0, author = {L\'arusson, Finnur}, title = {Compact quotients of large domains in complex projective space}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {223-246}, doi = {10.5802/aif.1616}, mrnumber = {99d:32035}, zbl = {0912.32020}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_1_223_0} }
Lárusson, Finnur. Compact quotients of large domains in complex projective space. Annales de l'Institut Fourier, Tome 48 (1998) pp. 223-246. doi : 10.5802/aif.1616. http://gdmltest.u-ga.fr/item/AIF_1998__48_1_223_0/
[BPV] Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, 1984. | MR 86c:32026 | Zbl 0718.14023
, , ,[Bes] Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Springer-Verlag, 1987. | Zbl 0613.53001
,[Bla] Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 73 (1956), 157-202. | Numdam | MR 19,316e | Zbl 0073.37503
,[BJ] Introduction to differential topology, Cambridge University Press, 1982. | Zbl 0486.57001
, ,[Cam1] Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math., 63 (1981), 187-223. | MR 84e:32028 | Zbl 0436.32024 | Zbl 0447.32009
,[Cam2] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, 122 (1994), 255-284. | Numdam | MR 95f:32036 | Zbl 0810.32013
,[CP] Cycle spaces, Several Complex Variables VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, 1994. | MR 1326625 | Zbl 0811.32020
, ,[FF] Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. reine angew. Math., 306 (1979), 88-93. | MR 80i:32042 | Zbl 0395.32004
, ,[HP] Extending analytic objects, Comm. Pure Appl. Math., 28 (1975), 701-727. | MR 53 #13642 | Zbl 0323.32013
, ,[Hit] Kählerian twistor spaces, Proc. London Math. Soc., (3) 43 (1981), 133-150. | MR 84b:32014 | Zbl 0474.14024
,[Iva1] Extension of locally biholomorphic mappings of domains into complex projective space, Math. USSR Izvestiya, 22 (1984), 181-189. | Zbl 0561.32007
,[Iva2] The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math., 109 (1992), 47-54. | MR 93g:32016 | Zbl 0738.32008 | Zbl 0782.32009
,[Kat1] On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58. | MR 88c:32041 | Zbl 0588.32032
,[Kat2] Factorization of compact complex 3-folds which admit certain projective structures, Tôhoku Math. J., (2) 41 (1989), 359-397. | MR 91g:32038 | Zbl 0686.32016
,[Kat3] A non-Kähler structure on an S2-bundle over a ruled surface (1992), unpublished preprint.
,[Kat4] Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets, Tokyo J. Math., 19 (1996), 99-119. | MR 98a:32038 | Zbl 0864.57034
,[Kul] Some topological aspects of Kleinian groups, Amer. J. Math., 100 (1978), 897-911. | MR 80j:57044 | Zbl 0455.57022
,[Nor] The Schottky groups in higher dimensions, Contemporary Mathematics, 58, Part I (1986), 195-197. | MR 88c:32017 | Zbl 0597.32026
,[Sel] On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory, Tata Institute of Fundamental Research, (1960), 147-164. | MR 24 #A188 | Zbl 0201.36603
,[Shi1] On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968) 111-120. | MR 37 #464 | Zbl 0165.40503
,[Shi2] Extension of positive line bundles and meromorphic maps, Invent. Math., 15 (1972), 332-347. | MR 51 #10689 | Zbl 0223.32017
,[Sim] The monodromy representation of projective structures, Arch. Math., 52 (1989), 413-416. | MR 90g:32010 | Zbl 0656.32006 | Zbl 0671.32014
,[Yam] Small deformations of certain compact manifolds of class L. II, Tokyo J. Math., 10 (1987), 189-202. | MR 89d:32046 | Zbl 0632.32012
,[Yau] A review of complex differential geometry, Proc. Symp. Pure Math., 52, Part 2 (1991), 619-625. | MR 92j:32029 | Zbl 0739.32001
,