Soit la suite de Thue-Morse, c’est-à-dire la suite définie par les relations de récurrence :
Soit , la suite double des déterminants de Hankel (modulo 2) associés à la suite de Thue-Morse. Elle vérifie un ensemble complexe de relations de récurrence. On montre qu’elle est 2-automatique. On donne des applications, notamment à l’étude combinatoire de la suite de Thue-Morse et à l’existence de certains approximants de Padé de la série formelle : .
Let be the Thue-Morse sequence, i.e., the sequence defined by the recurrence equations:
We consider , the double sequence of Hankel determinants (modulo 2) associated with the Thue-Morse sequence. Together with three other sequences, it obeys a set of sixteen recurrence equations. It is shown to be automatic. Applications are given, namely to combinatorial properties of the Thue-Morse sequence and to the existence of certain Padé approximants of the power series .
@article{AIF_1998__48_1_1_0, author = {Allouche, Jean-Paul and Peyri\`ere, Jacques and Wen, Zhi-Xiong and Wen, Zhi-Ying}, title = {Hankel determinants of the Thue-Morse sequence}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {1-27}, doi = {10.5802/aif.1609}, mrnumber = {99a:11024}, zbl = {0974.11010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_1_1_0} }
Allouche, Jean-Paul; Peyrière, Jacques; Wen, Zhi-Xiong; Wen, Zhi-Ying. Hankel determinants of the Thue-Morse sequence. Annales de l'Institut Fourier, Tome 48 (1998) pp. 1-27. doi : 10.5802/aif.1609. http://gdmltest.u-ga.fr/item/AIF_1998__48_1_1_0/
[1] Automates finis en théorie des nombres, Expo. Math., 5 (1987), 239-266. | MR 88k:11046 | Zbl 0641.10041
,[2] Padé approximants, Encyclopedia of mathematics and its applications, I, II, Cambridge University Press, 1981. | Zbl 0603.30044
and ,[3] Padé-type approximation and general orthogonal polynomials, Birkhäuser Verlag, 1980. | MR 82a:41017 | Zbl 0418.41012
,[4] Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108 (1980), 401-419. | Numdam | MR 82e:10092 | Zbl 0472.10035
, , and ,[5] A proof of transcendence based on functional equations, IBM RC-2041, Yorktown Heights, New York, 1968.
,[6] Uniform tag sequences, Math. Systems Theory, 6 (1972), 164-192. | MR 56 #15230 | Zbl 0253.02029
,[7] Combinatorial and statistical properties of sequences generated by substitutions, Thesis, Mathematisch Instituut, Katholieke Universiteit van Nijmegen, 1980.
,[8] Folds!, Math. Intelligencer, 4 (1982), 130-138, 173-181 and 190-195. | Zbl 0493.10001
, and ,[9] Substitution minimal sets, Trans. Amer. Math. Soc., 109 (1963), 467-491. | MR 32 #8325 | Zbl 0121.18002
,[10] Recurrent geodesic on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100. | JFM 48.0786.06
,[11] Substitution dynamical systems — Spectral analysis, Lecture Notes in Math., 1294, Springer-Verlag (1987). | MR 89g:54094 | Zbl 0642.28013
,[12] Suites automatiques à multi-indices et algébricité, C.R. Acad. Sci. Paris, Série I, 305 (1987), 501-504. | MR 88k:11094 | Zbl 0628.10007
,[13] Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, Exposé 4, (1986-1987), 4-01-4-27; followed by an appendix by J. Shallit, 4-29A-4-36A. | Zbl 0653.10049
,[14] Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 7 (1906), 1-22. | JFM 39.0283.01
,[15] Über die gegenseitige Lage gleicher Teile gewisse Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 1 (1912), 1-67. | JFM 44.0462.01
,[16] The sequences of substitutions and related topics, Adv. Math. China, 3 (1989), 123-145. | Zbl 0694.10006
and ,[17] Mots infinis et produits de matrices à coefficients polynomiaux, RAIRO, Theoretical Informatics and Applications, 26 (1992), 319-343. | Numdam | MR 93d:15035 | Zbl 0758.11016
and ,[18] Some studies on the (p,q)-type sequences, Theoret. Comput. Sci., 94 (1992), 373-393. | MR 93g:11022 | Zbl 0758.11017
and ,