À tout cône ouvert elliptique convexe dans l’algèbre de Lie d’un groupe de Lie on associe un semi-groupe complexe qui permet une action holomorphe de . Si est l’algèbre de Lie toute entière, le semi-groupe est un groupe complexe réductif. Dans cet article on montre que chaque semi-groupe est une variété de Stein, qu’un domaine biinvariant est de Stein si et seulement si où est convexe, que toute fonction holomorphe sur s’étend au plus petit domaine de Stein contenant , et que les fonctions biinvariantes plurisousharmoniques sur correspondent aux fonctions convexes sur .
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing , and that biinvariant plurisubharmonic functions on correspond to invariant convex functions on .
@article{AIF_1998__48_1_149_0, author = {Neeb, Karl-Hermann}, title = {On the complex and convex geometry of Ol'shanskii semigroups}, journal = {Annales de l'Institut Fourier}, volume = {48}, year = {1998}, pages = {149-203}, doi = {10.5802/aif.1614}, mrnumber = {99e:22013}, zbl = {0901.22003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1998__48_1_149_0} }
Neeb, Karl-Hermann. On the complex and convex geometry of Ol'shanskii semigroups. Annales de l'Institut Fourier, Tome 48 (1998) pp. 149-203. doi : 10.5802/aif.1614. http://gdmltest.u-ga.fr/item/AIF_1998__48_1_149_0/
[AL92] Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math. N. S., 3(4) (1992), 365-375. | MR 94a:32014 | Zbl 0777.32008
and ,[Fe94] Differentialgeometrische Charakterisierung invarianter Holomorphiegebiete, Schriftenreihe des Graduiertenkollegs “Geometrische und mathematische Physik”, Universität Bochum, 7, 1994. | Zbl 0850.32001
,[He93] Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France, 121 (1993), 445-463. | Numdam | MR 94i:32050 | Zbl 0794.32022
,[HHL89] “Lie Groups, Convex Cones, and Semigroups”, Oxford University Press, 1989. | MR 91k:22020 | Zbl 0701.22001
, and ,[HiNe93] “Lie semigroups and their applications”, Lecture Notes in Math., 1552, Springer, 1993. | Zbl 0807.22001
and ,[HNP94] Symplectic convexity theorems and coadjoint orbits, Comp. Math., 94 (1994), 129-180. | Numdam | MR 96d:53053 | Zbl 0819.22006
, and ,[Hö73] An introduction to complex analysis in several variables, North-Holland, 1973. | Zbl 0271.32001
,[Las78] Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif, Ann. Inst. Fourier, Grenoble, 28-1 (1978), 115-138. | Numdam | MR 80b:32006 | Zbl 0334.32028
,[MaMo60] “Sur certains espaces fibrés holomorphes sur une variété de Stein”, Bull. Soc. Math. France, 88 (1960), 137-155. | Numdam | MR 23 #A1061 | Zbl 0094.28104
, and ,[Ne94a] Holomorphic representation theory II, Acta Math., 173-1 (1994), 103-133. | MR 96a:22025 | Zbl 0842.22004
,[Ne94b] Realization of general unitary highest weight representations, Preprint 1662, Technische Hochschule Darmstadts, 1994.
,[Ne94c] A Duistermaat-Heckman formula for admissible coadjoint orbits, Proceedings of “Workshop on Lie Theory and its applications in Physics”, Clausthal, August, 1995, Eds. Doebner, Dobrev, to appear. | Zbl 0920.22009
,[Ne94d] A convexity theorem for semisimple symmetric spaces, Pacific Journal of Math., 162-2 (1994), 305-349. | MR 95b:22016 | Zbl 0809.53058
,[Ne94e] On closedness and simple connectedness of adjoint and coadjoint orbits, Manuscripta Math., 82 (1994), 51-65. | MR 94k:22012 | Zbl 0815.22004
,[Ne95a] Holomorphic representation theory I, Math., Ann., 301 (1995), 155-181. | MR 96a:22024 | Zbl 0829.43017
,[Ne95b] Holomorphic representations of Ol'shanskiĠ semigroups, in “Semigroups in Algebra, Geometry and Analysis”, K. H. Hofmann et al., eds., de Gruyter, 1995. | MR 97b:22017 | Zbl 0851.22014
,[Ne96a] Invariant Convex Sets and Functions in Lie Algebras, Semigroup Forum 53 (1996), 230-261. | MR 97j:17033 | Zbl 0873.17009
,[Ne96b] Coherent states, holomorphic extensions, and highest weight representations, Pac. J. Math., 174-2 (1996), 497-542. | Zbl 0894.22008
,[Ne98] “Holomorphy and Convexity in Lie Theory”, de Gruyter, Expositions in Mathematics, to appear. | Zbl 0936.22001
,[Ra86] Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, New York, 1986. | MR 87i:32001 | Zbl 0591.32002
,[Ro63] On Envelopes of Holomorphy, Comm. on Pure and Appl. Math., 16 (1963), 9-17. | MR 26 #6436 | Zbl 0113.06001
,