Soit un groupe de Lie connexe compact. Pour un domaine , -invariant et relativement compact dans un espace homogène de Stein , nous montrons que le groupe des automorphismes de est compact et si est semi-simple, une application holomorphe propre de est biholomorphe.
Given a compact connected Lie group . For a relatively compact -invariant domain in a Stein -homogeneous space, we prove that the automorphism group of is compact and if is semisimple, a proper holomorphic self mapping of is biholomorphic.
@article{AIF_1997__47_4_1101_0, author = {Zhou, Xiang-Yu}, title = {On invariant domains in certain complex homogeneous spaces}, journal = {Annales de l'Institut Fourier}, volume = {47}, year = {1997}, pages = {1101-1115}, doi = {10.5802/aif.1593}, mrnumber = {99a:32045}, zbl = {0881.32015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1997__47_4_1101_0} }
Zhou, Xiang-Yu. On invariant domains in certain complex homogeneous spaces. Annales de l'Institut Fourier, Tome 47 (1997) pp. 1101-1115. doi : 10.5802/aif.1593. http://gdmltest.u-ga.fr/item/AIF_1997__47_4_1101_0/
[1] The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717. | MR 31 #1685 | Zbl 0115.38405
, ,[2] Plurisubharmonic functions and the Kempf-Ness theorem, Bull. London Math. Soc., 25 (1993), 162-168. | MR 93m:32044 | Zbl 0795.32002
, ,[3] Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. | MR 85b:32041 | Zbl 0534.32009
,[4] On the automorphism group of a Stein manifold, Math. Ann., 266 (1983), 215-227. | MR 85h:32049 | Zbl 0532.32014
,[5] Symmetric compact complex spaces, Arch. Math., 33 (1979), 49-56. | MR 80k:32033 | Zbl 0423.32015
,[6] Differential forms in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982. | MR 83i:57016 | Zbl 0496.55001
, ,[7] Invariant domains in complex symmetric spaces, J. reine angew. Math., 454 (1994), 97-118. | MR 95g:32052 | Zbl 0803.32019
, ,[8] Proper holomorphic mappings. A survey, in Proceedings of the special year on several complex variables at Mittag-Leffler Institute, E. Fornaess ed., Princeton University Press, Princeton, 1993. | MR 94a:32042 | Zbl 0778.32008
,[9] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | MR 20 #4661 | Zbl 0081.07401
,[10] Connections, curvature, and cohomology, Academic Press, New York, London, 1972. | MR 336650 | Zbl 0322.58001
, , ,[11] Geometric invariant theory on Stein space, Math. Ann., 289 (1991), 631-662. | MR 1103041 | MR 92j:32116 | Zbl 0728.32010
,[12] Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France., 121 (1993), 445-463. | Numdam | MR 1242639 | MR 94i:32050 | Zbl 0794.32022
,[13] Invariant plurisubharmonic exhaustions and retractions, Manu. Math., 83 (1994), 19-29. | MR 1265915 | MR 95a:32055 | Zbl 0842.32010
, ,[14] An equivariant version of Grauert's Oka principle, Invent. Math., 119 (1995), 317-346. | MR 1312503 | MR 96c:32034 | Zbl 0837.32004
, ,[15] Differential topology, Springer-Verlag, New York, Heidelberg, Berlin, 1976. | MR 448362 | MR 56 #6669 | Zbl 0356.57001
,[16] Topological methods in algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966. | MR 34 #2573 | Zbl 0138.42001
,[17] An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1966. | Zbl 0138.06203
,[18] Fibre bundles, McGraw-Hill, New York et al., 1966. | MR 229247 | MR 37 #4821 | Zbl 0144.44804
,[19] Holomorphic functions of several variables, Walter de Gruyter, Berlin, New York, 1983. | MR 716497 | Zbl 0528.32001
, ,[20] Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | MR 414940 | Zbl 0346.32031
,[21] Geomtrische Methoden in der Invariantentheri, Braunschweig-Wiesbaden, Vieweg, 1985. | MR 768181 | Zbl 0669.14003
,[22] Séries de Laurent des functions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., 11 (1978), 167-210. | Numdam | MR 510548 | MR 80f:22006 | Zbl 0452.43011
,[23] A basic course in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1991. | MR 1095046 | MR 92c:55001 | Zbl 0725.55001
,[24] On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. | MR 100267 | MR 20 #6700 | Zbl 0084.39002
,[25] Rigiditity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann., 266 (1984), 433-447. | MR 735526 | MR 85f:32044 | Zbl 0574.32021
,[26] On the homology group of Stein spaces, Invent. Math., 2 (1967), 377-385. | MR 216525 | MR 35 #7356 | Zbl 0148.32202
,[27] Several complex variables, University of Chicago, Chicago, 1971. | MR 342725 | MR 49 #7470 | Zbl 0223.32001
,[28] Topology of transitive transformation groups, Fizmatlit Publishing Company, Moscow, 1994 (Russian). | MR 1379333 | MR 95e:57058 | Zbl 0796.57001
,[29] On proper holomorphic mappings of strictly psedoconvex domains, Siberian Math. J., 15 (1974), 909-917 (Russian). | MR 355109 | Zbl 0303.32016
,[30] Eigentlische holomorphe Abbildungen, Math. Z., 73 (1960), 159-189. | MR 124528 | MR 23 #A1840 | Zbl 0102.06903
, ,[31] Topology of fibre bundles, Princeton University Press, Princeton, 1951. | MR 39258 | MR 12,522b | Zbl 0054.07103
,[32] Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. | MR 746308 | Zbl 0955.22500
,[33] Spaces of constant curvature, Publish or Perish, Boston, 1974. | MR 343214 | MR 49 #7958 | Zbl 0281.53034
,[34] On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izvestija RAN., Ser. Math., 58 (1994), 196-205. | MR 1275909 | Zbl 0835.32006
,