De fortes pathologies par rapport aux propriétés de croissance peuvent apparaître pour l’extension des fonctions holomorphes d’une sous-variété d’un domaine à tout entier, même dans des cas très simples; les espaces ne sont, en général, pas tous préservés par extension. De même, la restriction de l’espace de Hilbert à , peut avoir une structure très étrange.
Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds of pseudoconvex domains to all of even in quite simple situations; The spaces are, in general, not at all preserved. Also the image of the Hilbert space under the restriction to can have a very strange structure.
@article{AIF_1997__47_4_1079_0, author = {Diederich, Klas and Mazzilli, Emmanuel}, title = {Extension and restriction of holomorphic functions}, journal = {Annales de l'Institut Fourier}, volume = {47}, year = {1997}, pages = {1079-1099}, doi = {10.5802/aif.1592}, mrnumber = {99d:32012}, zbl = {0881.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1997__47_4_1079_0} }
Diederich, Klas; Mazzilli, Emmanuel. Extension and restriction of holomorphic functions. Annales de l'Institut Fourier, Tome 47 (1997) pp. 1079-1099. doi : 10.5802/aif.1592. http://gdmltest.u-ga.fr/item/AIF_1997__47_4_1079_0/
[1] Extension de fonctions holomorphes et courants, Bull. Sc. Math., 107 (1983), 25-48. | MR 85c:32025 | Zbl 0543.32007
,[2] Extension de fonctions holomorphes et intégrales singulières, C.R. Acad. Sc. Paris, 299 (1984), 371-374. | MR 85k:32026 | Zbl 0587.32023
,[3] Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-110. | Numdam | MR 84j:32003 | Zbl 0466.32001
, ,[4] Extension dans les classes de Hardy de fonctions holomorphes, Ph.D. thesis, Université Paul Sabatier Toulouse, 1980.
,[5] Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. | MR 93e:32015 | Zbl 0777.32016
,[6] Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Ancona, V., Silva, A., eds.), Plenum Press, 1993, pp. 115-193. | Zbl 0792.32006
,[7] Effective bounds for very ample line bundles, Invent. Math., 124 (1996), 243-261. | MR 97a:32035 | Zbl 0862.14004
,[8] Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. | MR 57 #16696 | Zbl 0378.32014
, ,[9] Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | MR 93h:32016 | Zbl 0759.32002
, ,[10] Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis, 3 (1993), 237-267. | MR 94m:32033 | Zbl 0786.32016
, ,[11] Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (Trépreau, H., Skoda, J. M., eds.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. | MR 96b:32019 | Zbl 0845.32019
, , .,[12] The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471-478. | MR 87g:32027 | Zbl 0582.32028
, , ,[13] Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563. | MR 46 #7558 | Zbl 0255.32008
,[14] Theory of Functions on Complex Manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. | MR 86a:32002 | Zbl 0726.32001
, ,[15] Division et extension des fonctions holomorphes dans les ellipsoides, Ph.D. thesis, Universit Paul Sabatier de Toulouse, 1995.
,[16] Extension des fonctions holomorphes, C.R. Acad. Sci. Paris, 321 (1995), 837-841. | MR 96i:32010 | Zbl 0846.32015
,[17] Extension des fonctions holomorphes dans les pseudo-ellipsoides, to appear in Math. Z., 1996.
,[18] On the extension of L2-holomorphic functions II, Publ. RIMS Kyoto Univ., 24 (1988), 265-275. | MR 89d:32031 | Zbl 0653.32012
,[19] On the extension of L2-holomorphic functions III: negligible weights, Math. Z., 219 (1995), 215-226. | MR 96h:32011 | Zbl 0823.32006
,[20] On the extension of L2-holomorphic functions, Math. Z., 195 (1987), 197-204. | MR 88g:32029 | Zbl 0625.32011
, ,[21] The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Preprint, 1995. | Zbl 0941.32021
,[22] Applications de techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. Paris, 5 (1972), 545-579. | Numdam | MR 48 #11571 | Zbl 0254.32017
,