Soit l’anneau des polynômes de variables. Soit la transformation de Fourier de la matrice d’opérateurs différentiels associée à la condition de régularité imposée à une fonction de variables quaternioniques, et le module défini par les colonnes de . Dans cet article nous prouvons que la dimension projective du module est . Nous prouvons ensuite, comme corollaire, que la dimension flasque du faisceau des fonctions régulières est , et que certains groupes de cohomologie sont nuls pour les ouverts de l’espace de quaternions. Nous démontrons que pour et que , et nous utilisons ce résultat pour prouver que certaines singularités du système de Cauchy-Fueter peuvent être éliminées.
In this paper we prove that the projective dimension of is , where is the ring of polynomials in variables with complex coefficients, and is the module generated by the columns of a matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension , and we prove a cohomology vanishing theorem for open sets in the space of quaternions. We also show that , for and and we use this result to show the removability of certain singularities of the Cauchy–Fueter system.
@article{AIF_1997__47_2_623_0, author = {Adams, William W. and Loustaunau, Philippe and Palamodov, Victor P. and Struppa, Daniele C.}, title = {Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring}, journal = {Annales de l'Institut Fourier}, volume = {47}, year = {1997}, pages = {623-640}, doi = {10.5802/aif.1576}, mrnumber = {98f:32013}, zbl = {0974.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1997__47_2_623_0} }
Adams, William W.; Loustaunau, Philippe; Palamodov, Victor P.; Struppa, Daniele C. Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring. Annales de l'Institut Fourier, Tome 47 (1997) pp. 623-640. doi : 10.5802/aif.1576. http://gdmltest.u-ga.fr/item/AIF_1997__47_2_623_0/
[1] Regular Functions of Several Quaternionic Variables and the Cauchy-Fueter Complex, to appear in J. of Complex Variables. | Zbl 0966.35088
, , , , and ,[2] An Introduction to Gröbner Bases, Graduate Studies in Mathematics, Vol. 3, American Mathematical Society, Providence, (RI), 1994. | MR 95g:13025 | Zbl 0803.13015
and ,[3] Ideals defined by matrices, and a certain complex associated to them, Proc. Royal Soc., 269 (1962), 188-204. | Zbl 0106.25603
and ,[4] Commutative Algebra with a View Toward Algebraic Geometry, Springer Verlag, New York (NY), 1994. | Zbl 0819.13001
,[5] Sheaves of quaternionic hyperfunctions and microfunctions, Compl. Var. Theory and Appl., 24 (1994), 161-184. | MR 95d:30091 | Zbl 0819.30030
, , ,[6] Relative Cohomology of Sheaves of Solutions of Differential Equations, Springer LNM, 287 (1973), 192-261. | MR 52 #14681 | Zbl 0278.58010
,[7] Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France, 85 (1957), 231-237. | Numdam | MR 20 #1340 | Zbl 0079.39201
,[8] Linear Differential Operators with Constant Coefficients, Springer Verlag, New York, 1970. (English translation of Russian original, Moscow, 1967.) | Zbl 0191.43401
,[9] An Introduction to Homological Algebra, Academic Press, New York, 1979. | MR 80k:18001 | Zbl 0441.18018
,[10] Microfunctions and Pseudo-Differential Equations, Springer LNM, 287 (1973), 265-529. | MR 54 #8747 | Zbl 0277.46039
, , and ,