Families of curves and alterations
Jong, A. Johan de
Annales de l'Institut Fourier, Tome 47 (1997), p. 599-621 / Harvested from Numdam

Dans l’article on prouve que toute famille de courbes peut être altérée en une famille semi-stable. Soit S un schéma excellent de dimension 0, 1 ou 2 et soit X un schéma séparé de type fini sur S. Alors le résultat implique qu’on peut altérer X en un schéma régulier. C’est un résultat plus fort que ceux de [Smoothness, semi-stability and alterations à paraître dans Publ. Math. IHES]. De plus, on considère des situations où un groupe fini agit, et on obtient des résultats analogues.

In this article it is shown that any family of curves can be altered into a semi-stable family. This implies that if S is an excellent scheme of dimension at most 2 and X is a separated integral scheme of finite type over S, then X can be altered into a regular scheme. This result is stronger then the results of [ Smoothness, semi-stability and alterations to appear in Publ. Math. IHES]. In addition we deal with situations where a finite group acts.

@article{AIF_1997__47_2_599_0,
     author = {Jong, A. Johan de},
     title = {Families of curves and alterations},
     journal = {Annales de l'Institut Fourier},
     volume = {47},
     year = {1997},
     pages = {599-621},
     doi = {10.5802/aif.1575},
     mrnumber = {98f:14019},
     zbl = {0868.14012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1997__47_2_599_0}
}
Jong, A. Johan de. Families of curves and alterations. Annales de l'Institut Fourier, Tome 47 (1997) pp. 599-621. doi : 10.5802/aif.1575. http://gdmltest.u-ga.fr/item/AIF_1997__47_2_599_0/

[1] A.J. De Jong, Smoothness, semi-stability and alterations, Publications Mathématiques I.H.E.S. | Numdam

[2] A.J. De Jong and F. Oort, On extending families of curves, to appear in Journal of Algebraic Geometry. | Zbl 0922.14017

[3] N.M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press (1985). | MR 86i:11024 | Zbl 0576.14026

[4] J. Lipman, Desingularization of two-dimensional schemes, Annals of Mathematics, 107(1978), 151-207. | MR 58 #10924 | Zbl 0369.14005

[5] D. Mumford and J. Fogarty, Geometric invariant theory, Second Enlarged Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer Verlag (1982). | MR 86a:14006 | Zbl 0504.14008

[6] M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Techniques de "platification" d'un module, Inventiones Mathematicae, 13 (1971), 1-89. | Zbl 0227.14010