Dans l’article on prouve que toute famille de courbes peut être altérée en une famille semi-stable. Soit un schéma excellent de dimension 0, 1 ou 2 et soit un schéma séparé de type fini sur . Alors le résultat implique qu’on peut altérer en un schéma régulier. C’est un résultat plus fort que ceux de [Smoothness, semi-stability and alterations à paraître dans Publ. Math. IHES]. De plus, on considère des situations où un groupe fini agit, et on obtient des résultats analogues.
In this article it is shown that any family of curves can be altered into a semi-stable family. This implies that if is an excellent scheme of dimension at most 2 and is a separated integral scheme of finite type over , then can be altered into a regular scheme. This result is stronger then the results of [ Smoothness, semi-stability and alterations to appear in Publ. Math. IHES]. In addition we deal with situations where a finite group acts.
@article{AIF_1997__47_2_599_0, author = {Jong, A. Johan de}, title = {Families of curves and alterations}, journal = {Annales de l'Institut Fourier}, volume = {47}, year = {1997}, pages = {599-621}, doi = {10.5802/aif.1575}, mrnumber = {98f:14019}, zbl = {0868.14012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1997__47_2_599_0} }
Jong, A. Johan de. Families of curves and alterations. Annales de l'Institut Fourier, Tome 47 (1997) pp. 599-621. doi : 10.5802/aif.1575. http://gdmltest.u-ga.fr/item/AIF_1997__47_2_599_0/
[1] Smoothness, semi-stability and alterations, Publications Mathématiques I.H.E.S. | Numdam
,[2] On extending families of curves, to appear in Journal of Algebraic Geometry. | Zbl 0922.14017
and ,[3] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press (1985). | MR 86i:11024 | Zbl 0576.14026
and ,[4] Desingularization of two-dimensional schemes, Annals of Mathematics, 107(1978), 151-207. | MR 58 #10924 | Zbl 0369.14005
,[5] Geometric invariant theory, Second Enlarged Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer Verlag (1982). | MR 86a:14006 | Zbl 0504.14008
and ,[6] Critères de platitude et de projectivité, Techniques de "platification" d'un module, Inventiones Mathematicae, 13 (1971), 1-89. | Zbl 0227.14010
and ,