Soit une variété de dimension trois compacte, orientable, irréductible avec un tore. On montre qu’il peut y avoir un nombre infini de pentes sur le bord, réalisées par le bord d’une surface essentielle, immergée, proprement plongée au bord.
Let be a compact, orientable, irreducible 3-manifold with a torus. We show that there can be infinitely many slopes on realized by the boundary curves of immersed, incompressible, - incompressible surfaces in which are embedded in a neighborhood of .
@article{AIF_1996__46_5_1443_0, author = {Baker, Mark D.}, title = {On boundary slopes of immersed incompressible surfaces}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {1443-1449}, doi = {10.5802/aif.1555}, mrnumber = {98a:57023}, zbl = {0864.57015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_5_1443_0} }
Baker, Mark D. On boundary slopes of immersed incompressible surfaces. Annales de l'Institut Fourier, Tome 46 (1996) pp. 1443-1449. doi : 10.5802/aif.1555. http://gdmltest.u-ga.fr/item/AIF_1996__46_5_1443_0/
[H] On the boundary curves of incompressible surfaces, Pacific J. Math., 99 (1982), 373-377. | MR 83h:57016 | Zbl 0502.57005
,