On montre que l’on peut construire un crochet de Poisson pair à partir d’un crochet de Gerstenhaber, à l’aide d’une dérivation impaire de carré nul, dans la catégorie des algèbres de Loday (algèbres munies d’un crochet non antisymétrique, généralisant les crochets de Lie, appelées jusqu’à présent dans la littérature, algèbres de Leibniz). Ces “crochets dérivés” donnent des crochets de Lie sur certains quotients, et sur certaines sous-algèbres abéliennes. On peut expliquer ainsi l’origine du crochet de Lie sur l’espace des formes différentielles co-exactes sur une variété de Poisson. Nous étudions les crochets dérivés sur l’espace des cochaînes sur une algèbre associative ou de Lie. Enfin nous relions les résultats précédents à diverses généralisations de la notion d’algèbre de Batalin-Vilkovisky.
Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on the space of co-exact differential forms on a Poisson manifold. We further examine the derived brackets on the space of cochains of an associative or Lie algebra. Finally, we relate the previous result to various generalizations of the notion of BV-algebra.
@article{AIF_1996__46_5_1243_0, author = {Kosmann-Schwarzbach, Yvette}, title = {From Poisson algebras to Gerstenhaber algebras}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {1243-1274}, doi = {10.5802/aif.1547}, mrnumber = {98b:17032}, zbl = {0858.17027}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_5_1243_0} }
Kosmann-Schwarzbach, Yvette. From Poisson algebras to Gerstenhaber algebras. Annales de l'Institut Fourier, Tome 46 (1996) pp. 1243-1274. doi : 10.5802/aif.1547. http://gdmltest.u-ga.fr/item/AIF_1996__46_5_1243_0/
[A] On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Alg., to appear. | Zbl 0885.17020
,[BM] Graded Poisson structures on the algebra of differential forms, Comment. Math. Helvetici, 70 (1995), 383-402. | MR 96i:58047 | Zbl 0844.58025
AND ,[BMP] The W3 algebra : modules, semi-infinite cohomology and BV-algebras, preprint hep-th/9509119. | Zbl 0860.17042
, and ,[BP] The BV-algebra structure of W3 cohomology, Lect. Notes Phys. 447, G. Aktas, C. Sadioglu, M. Serdaroglu, eds. (1995), pp. 283-291. | MR 96j:17019 | Zbl 01638601
and ,[B] Théorie des opérateurs différentiels gradués sur les formes différentielles, Bull. Soc. Math. Fr., 102 (1) (1974), 49-73. | Numdam | MR 53 #14525 | Zbl 0285.58014
,[CV] Extensions of the Poisson bracket to differential forms and multi-vector fields, J. Geom. Phys., 9 (1992), 75-100. | MR 93d:17035 | Zbl 0748.58008
and ,[CNS] Graded Lie algebras in mathematics and physics, Rev. Mod. Phys., 47 (1975), 573-603. | Zbl 0557.17004
, and ,[DK1] Poisson and Nijenhuis brackets for differential forms on non-commutative manifolds, Preprint 698/10/95, Univ. Bielefeld.
and ,[DK2] Formal differential geometry and Nambu-Takhtajan algebra, Proc. Conf. “Quantum groups and quantum spaces”, Banach Center Publ., to appear.
and ,[DT] Hamiltonian operators and Hochschild homologies, Funct. Anal. Appl., 19 (4) (1985), 319-321. | Zbl 0606.58019
and ,[dWL] Formal deformations of the Poisson-Lie algebra of a symplectic manifold and star-products, in Deformation Theory of Algebras and Structures and Applications, M. Gerstenhaber and M. Hazewinkel, eds., 897-960, Kluwer, 1988. | MR 90c:58052 | Zbl 0685.58039
and ,[D] Quantum Groups, Proc. Int. Congress Math. Berkeley, Amer. Math. Soc., (1987), 798-820. | MR 89f:17017 | Zbl 0667.16003
,[D-VM] The Frölicher-Nijenhuis bracket for derivation based non commutative differential forms, J. Pure Appl. Alg., to appear.
and ,[FGV] Cohomology and deformation of Leibniz pairs, Lett. Math. Phys., 34 (1995), 77-90. | MR 96d:16018 | Zbl 0844.17015
, and ,[FN] Theory of vector-valued differential forms. Part I, Indag. Math., 18 (1956), 338-359. | Zbl 0079.37502
and ,[GDT] On a variant of noncommutative differential geometry, Soviet Math. Dokl., 40 (2) (1989), 422-426. | Zbl 0712.17026
, and ,[G] The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288. | MR 28 #5102 | Zbl 0131.27302
,[GS1] Algebraic cohomology and deformation theory, in Deformation Theory of Algebras and Structures and Applications, M. Gerstenhaber and M. Hazewinkel, eds., ASI C247, 11-264, Kluwer, 1988. | MR 90c:16016 | Zbl 0676.16022
and ,[GS2] Algebras, bialgebras, quantum groups, and algebraic deformations, Contemporary Math., 134 (1992), 51-92. | MR 94b:16045 | Zbl 0788.17009
and ,[Gt] Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys., 159 (1994), 265-285. | MR 95h:81099 | Zbl 0807.17026
,[KiSV] On operad structures of moduli spaces and string theory, Comm. Math. Phys., 171 (1995), 1-25. | MR 96k:14019 | Zbl 0844.57039
, and ,[K-S1] Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemporary Math., 132 (1992), 459-489. | MR 94b:17025 | Zbl 0847.17020
,[K-S2] Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Math., 41 (1995), 153-165. | MR 97i:17021 | Zbl 0837.17014
,[K-SM] Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, Phys. Théor., 53 (1) (1990), 35-81. | Numdam | MR 92b:17026 | Zbl 0707.58048
and ,[Kt] Graded manifolds, graded Lie theory and prequantization, Lect. Notes Math., 570 (1977), 177-30. | MR 58 #28326 | Zbl 0358.53024
,[KtS] Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys., 176 (1987), 49-113. | MR 88m:58057 | Zbl 0642.17003
and ,[K] Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série (1985), 257-271. | MR 88m:17013 | Zbl 0615.58029
,[Ko]
, unpublished notes (1990).[Kr1] Schouten bracket and canonical algebras, in Global Analysis, Lect. Notes Math., 1334 (1988), 79-110. | MR 90i:58055 | Zbl 0661.53059
,[Kr2] Supercanonical algebras and Schouten brackets, Mathematical Notes, 49 (1) (1991), 70-76. | MR 92c:17025 | Zbl 0723.58020 | Zbl 0732.58016
,[LMS] The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Alg., 77 (1992), 87-102. | MR 93d:17036 | Zbl 0752.17019
, and ,[LR] Modules et cohomologie des bigèbres de Lie, C.R. Acad. Sci. Paris, Série I, 310 (1990), 405-410. | MR 91c:17013 | Zbl 0707.17013
et ,[L1] Cyclic homology, Grund. Math. Wiss. 301, Springer-Verlag, 1992. | MR 94a:19004 | Zbl 0780.18009
,[L2] Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Mathématique, 39 (1993), 269-293. | MR 95a:19004 | Zbl 0806.55009
,[LZ] New perspectives on the BRST-algebraic structure in string theory, Comm. Math. Phys., 154 (1993), 613-646. | MR 94e:81333 | Zbl 0780.17029
and ,[M] A generalization of Hamiltonian mechanics, J. Geom. Phys., 2 (2) (1985), 67-82. | MR 845468 | MR 87k:58093 | Zbl 0587.58004
,[N] The graded Lie algebras of an algebra. Indag. Math., 29 (1967), 475-486. | MR 225828 | MR 37 #1420a | Zbl 0153.36201
,[NR] Deformations of Lie algebra structures, J. Math. Mech., 171 (1967), 89-106. | MR 214636 | MR 35 #5485 | Zbl 0166.30202
and ,[PS] On some algebraic structures arising in string theory, in Perspectives in Mathematical Physics, vol. 3, R. Penner and S.T. Yau, eds., International Press, 1994. | MR 1314668 | MR 96b:81121 | Zbl 0871.17021
and ,[R] Algèbres de Lie graduées et quantification, in Symplectic Geometry and Mathematical Physics, P. Donato et al., eds., Progress in Math. 99, Birkhäuser, (1991), pp. 374-421. | MR 1156550 | MR 93f:17045 | Zbl 0748.17028
,[Va] Lectures on the Geometry of Poisson Manifolds, Progress in Math. 118, Birkhäuser (1994). | MR 1269545 | MR 95h:58057 | Zbl 0810.53019
,[V] Unification of Schouten-Nijenhuis and Frölicher-Nijenhuis brackets, cohomology and super-differential operators, Mat. Zametki, 47 (6), 138-140 (1990). | MR 1074539 | Zbl 0712.58059
,[W] A note on the antibracket formalism, Modern Phys. Lett. A, 5 (7) (1990), 487-494. | MR 1049114 | MR 91h:81178 | Zbl 1020.81931 | Zbl 01627199
,