Considérons le cardinal de l’ensemble des racines cubiques de l’unité dans le groupe des classes de , où est un discriminant fondamental. Un résultat de Davenport et Heilbronn calcule la valeur moyenne de ces nombres quand varie. On obtient ici géométriquement une borne explicite pour le reste, avec la possibilité supplémentaire de restreindre les à des progressions arithmétiques. Des techniques de crible permettent alors d’évaluer la 3-partie des , où est pseudo-premier d’ordre . On contrôle ainsi simultanément le 2-rang et le 3-rang du groupe des classes . L’auteur donne en particulier une borne pour le 3-rang en moyenne des , où est premier.
Call the number of cube roots of unity in the class group of , where is a fundamental discriminant. Davenport and Heilbronn computed the mean value of these numbers when tends to . The author gives a general geometric argument yielding an explicit bound for the error term, with the additional possibility of restricting to arithmetic progressions. Sieve techniques then produce results about the 3-parts of the groups , where is an almost-prime of order . In this way, one controls simultaneously both the 2-rank and the 3-rank of the class group . As a special case, the author gives a bound for the mean 3-rank of the , where is prime.
@article{AIF_1996__46_4_909_0, author = {Belabas, Karim}, title = {Crible et 3-rang des corps quadratiques}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {909-949}, doi = {10.5802/aif.1535}, mrnumber = {98b:11112}, zbl = {0853.11088}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_4_909_0} }
Belabas, Karim. Crible et 3-rang des corps quadratiques. Annales de l'Institut Fourier, Tome 46 (1996) pp. 909-949. doi : 10.5802/aif.1535. http://gdmltest.u-ga.fr/item/AIF_1996__46_4_909_0/
[1] Real algebraic and semi-algebraic sets, Hermann, 1990. | MR 91j:14045 | Zbl 0694.14006
and ,[2] Binary quadratic forms, Springer-Verlag, 1989. | Zbl 0698.10013
,[3] Heuristics on class groups of number fields, in Number Theory, Noordwijkerhout 1983, Lecture Notes in Math. n° 1068, Springer-Verlag, 1984. | Zbl 0558.12002
and .,[4] Density of discriminants of cubic extensions, J. reine. angew. Math., 386 (1988), 116-138. | MR 90b:11112 | Zbl 0632.12007
and ,[5] On a principle of Lipschitz, J. Lond. Math. Soc., 26 (1951), 179-183. | MR 13,323d | Zbl 0042.27504
,[6] On the class number of binary cubic forms (I), J. Lond. Math. Soc., 26 (1951), 183-192 (erratum, ibid. 27 (1951), p. 512). | Zbl 0044.27002
,[7] On the class number of binary cubic forms (II), J. Lond. Math. Soc., 26 (1951), 192-198. | MR 13,323f | Zbl 0044.27002
,[8] On the density of discriminants of cubic fields (I), Bull. Lond. Math. Soc., 1 (1969), 345-348. | MR 40 #7223 | Zbl 0211.38602
and ,[9] On the density of discriminants of cubic fields (II), Proc. Roy. Soc. Lond. A, 322 (1971), 405-420. | MR 58 #10816 | Zbl 0212.08101
and ,[10] Sur le comportement en moyenne du rang des courbes y2 = x3 + k, in Séminaire de Théorie des Nombres Paris, 1990-1991, Birkhäuser, 1993, 61-83. | Zbl 0814.11034
,[11] Sieve methods, Academic Press, 1974. | MR 54 #12689 | Zbl 0298.10026
and ,[12] Arithmetische Theorie der kubischen Zahlkörper auf klassenkörper-theoretischer Grundlage, Math. Zeitschrift, 31 (1930), 565-582. | JFM 56.0167.02
,[13] A new form of the error term in the linear sieve, Acta. Arith., 37 (1980), 307-320. | MR 82d:10069 | Zbl 0444.10038
,[14] Rosser's sieve, Acta. Arith., 36 (1980), 171-202. | MR 81m:10086 | Zbl 0435.10029
,[15] Perversity and exponential sums, Adv. Stud. in Pure Math., 17 (1989), 210-259. | MR 92m:11080 | Zbl 0755.14008
,[16] Transformation de Fourier et majoration de sommes exponentielles, Pub. Math. IHES, 62 (1985), 361-418. | Numdam | MR 87i:14017 | Zbl 0603.14015
and ,[17] On the reduction and classification of binary cubic which have a negative discriminant, Proc. London Math. Soc., 10 (1912), 128-138. | JFM 42.0243.04
,[18] Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sciences, série I Math., 305 (1987), 215-218. | MR 88j:11074 | Zbl 0622.14025
,[19] On zeta functions associated with prehomogenous vector spaces, Ann. of Math., 100 (1974), 131-170. | MR 49 #8969 | Zbl 0309.10014
and ,[20] On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan, 24 (1972), 132-188. | MR 44 #6619 | Zbl 0227.10031
,[21] On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo, Sec. Ia, 22 (1975), 25-66. | MR 52 #5590 | Zbl 0313.10041
,[22] Introduction à la théorie analytique et probabiliste des nombres, Pub. Inst. Élie Cartan, 1990. | Zbl 0788.11001
,[23] On the volume of tubes, Amer. J. of Math., 61 (1939), 461-472. | JFM 65.0796.01 | Zbl 0021.35503
,