L’espace des configurations de points distincts de admet une filtration naturelle qui est induite par les inclusions des dans . Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des -opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.
The configuration space of -tuples of pairwise distinct points in carries a natural filtration coming from the inclusions of the into . We characterize the homotopy type of this filtration by the combinatorial properties of an underlying cellular structure and establish a close relationship to May’s theory of -operads. This gives a unified approach to the different known combinatorial models of iterated loop spaces reproving by the way the approximation theorems of Milgram, Smith and Kashiwabara.
@article{AIF_1996__46_4_1125_0, author = {Berger, Clemens}, title = {Op\'erades cellulaires et espaces de lacets it\'er\'es}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {1125-1157}, doi = {10.5802/aif.1543}, mrnumber = {98c:55011}, zbl = {0853.55007}, mrnumber = {1415960}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_4_1125_0} }
Berger, Clemens. Opérades cellulaires et espaces de lacets itérés. Annales de l'Institut Fourier, Tome 46 (1996) pp. 1125-1157. doi : 10.5802/aif.1543. http://gdmltest.u-ga.fr/item/AIF_1996__46_4_1125_0/
[1] Iterated monoidal categories, preprint (1995).
, , et ,[2] Geometry of loop spaces and the cobar-construction, Mem. of the Amer. Math. Soc., 230 (1980). | MR 81m:55010 | Zbl 0473.55009
,[3] Γ+-Structures I, II, III, Topology, 13 (1974), 25-45, 113-126, 199-207. | Zbl 0304.55010
et ,[4] Un groupoïde simplicial comme modèle de l'espace des chemins, Bull. Soc. Math. France, 123 (1995), 1-32. | Numdam | MR 96a:18010 | Zbl 0820.18005
,[5] On puzzles and polytope isomorphism, Aequationes Math., 34 (1987), 287-297. | MR 89b:52008 | Zbl 0634.52005
et ,[6] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer Verlag (1973). | MR 54 #8623a | Zbl 0285.55012
et ,[7] The homology of Cn+1-spaces, Lecture Notes in Math. 533, Springer Verlag (1976), 207-351. | MR 55 #9096 | Zbl 0334.55009
,[8] Splitting of certain spaces CX, Math. Proc. Camb. Phil. Soc., 84 (1978), 465-496. | MR 80a:55010 | Zbl 0408.55006
, et ,[9] Tensor product of operads and iterated loop spaces, Journal of Pure and Applied Algebra, 50 (1988), 237-258. | MR 89g:55012 | Zbl 0672.55004
,[10] The braid groups, Math. Scand., 10 (1962), 119-126. | MR 27 #742 | Zbl 0117.41101
et ,[11] The permutoassociahedron, MacLane's coherence theorem and asymptotic zones for KZ equation, Journal of Pure and Applied Algebra, 85 (1993), 119-142. | Zbl 0812.18003
,[12] On the Homotopy Type of Configuration Complexes, Contemporary Math., 146 (1993), 159-170. | MR 94j:55008 | Zbl 0802.55004
,[13] The Geometry of iterated loop spaces, Lecture Notes in Math., 277, Springer Verlag (1972). | MR 54 #8623b | Zbl 0244.55009
,[14] E∞-spaces, group completions and permutative categories, London Math. Soc. Lecture Notes, 11 (1974), 61-94. | Zbl 0281.55003
,[15] Iterated loop spaces, Annals of Math., 84 (1966), 386-403. | MR 34 #6767 | Zbl 0145.19901
,[16] Higher algebraic K-theory I, Lecture Notes in Math., 341, Springer Verlag (1973), 85-147. | MR 49 #2895 | Zbl 0292.18004
,[17] Configuration spaces and iterated loop spaces, Inventiones Math., 21 (1973), 213-221. | MR 48 #9710 | Zbl 0267.55020
,[18] Simplicial Group Models for ΩnSnX, Israel Journal of Math., 66 (1989), 330-350. | MR 91e:55014 | Zbl 0723.55004
,