Soit l’algèbre de Beurling à poids sur le cercle unité et, pour un ensemble fermé , soit . Nous montrons que, pour , il existe un ensemble fermé de mesure nulle tel que l’algèbre quotient n’est pas engendrée par ses idempotents, contrastant par là avec un résultat de Zouakia. De plus, pour les algèbres de Lipschitz et l’algèbre des fonctions absolument continues sur , nous caractérisons les ensembles fermés tels que les algèbres restrictions et soient engendrées par leurs idempotents.
Let be the Beurling algebra with weight on the unit circle and, for a closed set , let . We prove that, for , there exists a closed set of measure zero such that the quotient algebra is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras and the algebra of absolutely continuous functions on , we characterize the closed sets for which the restriction algebras and are generated by their idempotents.
@article{AIF_1996__46_4_1095_0, author = {Pedersen, Thomas Vils}, title = {Idempotents in quotients and restrictions of Banach algebras of functions}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {1095-1124}, doi = {10.5802/aif.1542}, mrnumber = {98b:46070}, zbl = {0853.46047}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_4_1095_0} }
Pedersen, Thomas Vils. Idempotents in quotients and restrictions of Banach algebras of functions. Annales de l'Institut Fourier, Tome 46 (1996) pp. 1095-1124. doi : 10.5802/aif.1542. http://gdmltest.u-ga.fr/item/AIF_1996__46_4_1095_0/
[1] The Wedderburn Decomposition of Some Commutative Banach Algebras, J. Funct. Anal., 107 (1992), 105-121. | MR 93d:46090 | Zbl 0765.46036
and ,[2] Spectral Synthesis, Academic Press, New York-London-San Francisco, 1975. | Zbl 0364.43001
,[3] Complete Normed Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | Zbl 0271.46039
and ,[4] Commutative Normed Rings, Chelsea Publishing Company, Bronx, New York, 1964.
, and ,[5] The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat., 8 (1969), 63-72. | MR 41 #5973 | Zbl 0193.10302
,[6] Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. | Zbl 0137.03202
and ,[7] Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR 43 #801 | Zbl 0195.07602
,[8] Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. | MR 28 #3279 | Zbl 0112.29304
and ,[9] An Introduction to Harmonic Analysis, John Wiley & Sons, New York, 1968. | MR 40 #1734 | Zbl 0169.17902
,[10] Impossibilité de la synthèse spectrale sur les groupes abeliens non compacts, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 85-92. | Numdam | MR 21 #5854c | Zbl 0101.09403
,[11] The Work of Silov on Commutative Semi-simple Banach Algebras, volume 20 of Notas de Matemática. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1959. | MR 33 #3130 | Zbl 0090.09301
,[12] Continuous translation of Hölder and Lipschitz functions, Can. J. Math., 12 (1960), 674-685. | MR 23 #A1993 | Zbl 0097.09702
,[13] Banach Algebras of Functions on the Circle and the Disc, Ph. D. Dissertation, University of Cambridge, October 1994.
,[14] General Theory of Banach Algebras, D. Van Nostrand Company, Princeton, N.J., 1960. | MR 22 #5903 | Zbl 0095.09702
,[15] Functional Analysis, McGraw-Hill Book Company, New York, 1973. | MR 51 #1315 | Zbl 0253.46001
,[16] The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272. | MR 28 #4385 | Zbl 0121.10204
,[17] Homogeneous rings of functions, Amer. Math. Soc. Transl., 92, 1953, Reprinted in Amer. Math. Soc. Transl. (1), 8 (1962), 392-455. | Zbl 0053.08401
,[18] Idéaux fermés de A+ et L1(ℝ+) et propriétés asymptotiques des contractions et des semigroupes contractants, Thèse pour le grade de Docteur d'Etat des Sciences, Université de Bordeaux I, 1990.
,[19] Trigonometric Series, volume 1, Cambridge University Press, second edition, 1959. | Zbl 0085.05601
,