Cet article est une étude de la série relative discrète de l’espace des sections d’un fibré sur un domaine symétrique borné. On démontre que toute série discrète provient, en tant que sous-module irréductible, d’un produit tensoriel d’une série holomorphe discrète par une représentation de dimension finie.
We study the relative discrete series of the -space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.
@article{AIF_1996__46_4_1011_0, author = {Dooley, Anthony H. and \O rsted, Bent and Zhang, Genkai}, title = {Relative discrete series of line bundles over bounded symmetric domains}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {1011-1026}, doi = {10.5802/aif.1538}, mrnumber = {98b:22028}, zbl = {0853.22011}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_4_1011_0} }
Dooley, Anthony H.; Ørsted, Bent; Zhang, Genkai. Relative discrete series of line bundles over bounded symmetric domains. Annales de l'Institut Fourier, Tome 46 (1996) pp. 1011-1026. doi : 10.5802/aif.1538. http://gdmltest.u-ga.fr/item/AIF_1996__46_4_1011_0/
[CM] Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869-930. | MR 85a:22024 | Zbl 0524.22014
& ,[FK] Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 89 (1990), 64-89. | MR 90m:32049 | Zbl 0718.32026
& ,[HC] Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. | MR 17,282c | Zbl 0066.35603
,[He] Groups and geometric analysis, Academic Press, London, 1984. | Zbl 0543.58001
,[JP] A new generalization of Hankel operators, Math. Nachr., 132 (1987), 313-328. | MR 88m:47045 | Zbl 0644.47026
& ,[J] On a ring of invariant polynomials on a Hermitian symmetric space, J. of Algebra, 67 (1980), 72-81. | MR 83c:22019 | Zbl 0491.22007
,[LP] Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations, Math. Scand., 72 (1993), 99-119. | Zbl 0785.22018
& ,[L] Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. | Zbl 0228.32012
,[OZ1] Tensor products of analytic continuations of holomorphic discrete series, preprint, 1994.
& ,[OZ2]
& , in preparation.[P] Covariant Laplaceans and Cauchy-Riemann operators for a Cartan domain, manuscript.
,[PPZ] A weighted Plancherel formula I. The case of the unit disk. Application to Hankel operators, technical report, Stockholm, 1990.
, & ,[PZ] A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math., 43 (1992), 273-301. | Zbl 0836.43018
& ,[Re] Tensor products of holomorphic discrete series, Can. J. Math., 31 (1979), 836-844. | MR 82c:22017 | Zbl 0373.22006
,[Sa] Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Tokyo and Princeton, NJ, 1980. | MR 82i:32003 | Zbl 0483.32017
,[Sch] One-dimensional K-types in finite dimensional representations of semisimple Lie groups : A generalization of Helgason's theorem, Math. Scand., 54 (1984), 279-294. | MR 85i:22014 | Zbl 0545.22015
,[Sh] The Plancherel formula for spherical functions with one-dimensional K-type on a simply connected simple Lie group of Hermitian type, J. Funct. Anal., 121 (1994), 331-388. | MR 95b:22036 | Zbl 0830.43018
,[Up] Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25. | MR 87e:32047 | Zbl 0603.46055
,[W] The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc., 251 (1979), 1-17; 19-37. | MR 81a:22009 | Zbl 0419.22017
,[Ze] Compact Lie groups and their representations, Amer. Math. Soc., Transl. Math. Monographs, vol. 40, Providence, Rhode Island, 1973. | Zbl 0272.22006
,[Zh1] Ha-plitz operators between Moebius invariant subspaces, Math. Scand., 71 (1992), 69-84. | MR 94e:47039a | Zbl 0793.47028
,[Zh2] A weighted Plancherel formula II. The case of the ball, Studia Math., 102 (1992), 103-120. | MR 94e:43009 | Zbl 0811.43003
,