Dans cet article, je montre qu’un domaine est hyperbolique pour la pseudodistance intégrée de Carathéodory (c’est-à-dire que est une distance sur ) si et seulement si la pseudodistance de Carathéodory vérifie la propriété de séparation faible suivante : tout point de possède un voisinage tel que, pour tout point de , , . Je construis aussi un exemple d’un domaine -hyperbolique et non -hyperbolique.
In this paper, I prove that a domain is hyperbolic for the Carathéodory integrated pseudodistance (this means that is a distance on ) if and only if the Carathéodory pseudodistance satisfies the following weak separation condition: for every , there exists a neighborhood of such that, , , . I also give an example of a domain , -hyperbolic but not -hyperbolic.
@article{AIF_1996__46_3_743_0, author = {Vigu\'e, Jean-Pierre}, title = {Sur les domaines hyperboliques pour la distance int\'egr\'ee de Carath\'eodory}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {743-753}, doi = {10.5802/aif.1530}, mrnumber = {97f:32031}, zbl = {0854.32010}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_3_743_0} }
Vigué, Jean-Pierre. Sur les domaines hyperboliques pour la distance intégrée de Carathéodory. Annales de l'Institut Fourier, Tome 46 (1996) pp. 743-753. doi : 10.5802/aif.1530. http://gdmltest.u-ga.fr/item/AIF_1996__46_3_743_0/
[1] Some counterexamples concerning intrinsic distances, Proc. Amer. Math. Soc., 66 (1977), 49-59. | MR 56 #12329 | Zbl 0331.32019
,[2] Sur les espaces complets pour la distance de Carathéodory, Atti Accad. Naz. Lincei (9), 5 (1994), 189-192. | MR 95e:32023 | Zbl 0813.32024
et ,[3] The Schwarz Lemma, Oxford Math. Monographs, Clarendon Press, Oxford, 1989. | MR 91f:46064 | Zbl 0708.46046
,[4] Holomorphic maps and invariant distances, Math. Studies 40, North-Holland, Amsterdam, 1980. | MR 82a:32032 | Zbl 0447.46040
and ,[5] Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, 1965. | MR 31 #4927 | Zbl 0141.08601
and ,[6] Schwarz-Pick systems of pseudo metrics for domains in normed linear spaces, In advances in Holomorphy, Mathematical Studies 34, North-Holland, Amsterdam, 1979, p. 345-406. | MR 80j:32043 | Zbl 0409.46053
,[7] The maximal ideal space of the bounded analytic function on the Riemann surface, J. Math. Soc. Japan, 39 (1987), 337-344. | MR 88i:30076 | Zbl 0598.30070
,[8] Bounded analytic functions on two sheeted discs, Trans. Amer. Math. Soc., 333 (1992), 799-819. | MR 92m:30079 | Zbl 0759.30018
, and ,[9] Invariant distances and metrics in complex analysis, De Gruyter Exposition in Mathematics 9, De Gruyter, Berlin, 1993. | MR 94k:32039 | Zbl 0789.32001
and ,[10] The Carathéodory distance does not define the topology - the case of domains, C R. Acad. Sci. Paris, série I, 312 (1991), 77-79. | MR 92a:32029 | Zbl 0721.32010
, and ,[11] Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc., 82 (1976), 357-416. | Zbl 0346.32031
,[12] Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math., 8 (1982), 257-261. | MR 84f:32026 | Zbl 0509.32015
,[13] Carathéodory and Kobayashi metrics on convex domains, preprint (1983).
and ,[14] Every stein subvariety admits a Stein neighborhood, Inventiones Math., 38 (1976) 89-100. | MR 55 #8407 | Zbl 0343.32014
,[15] Complex geodesics, Compositio Math., 44 (1981), 375-394. | Numdam | MR 84a:32037 | Zbl 0488.30015
,[16] Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. J., 40 (1991), 293-304. | MR 92c:32026 | Zbl 0733.32025
,