Dans cet article nous construisons des surfaces minimales complètes de genre arbitraire dans ayant un, deux, trois et quatre bouts respectivement et, de plus, les surfaces sont situées entre deux plans parallèles de .
In this paper we construct complete minimal surfaces of arbitrary genus in with one, two, three and four ends respectively. Furthermore the surfaces lie between two parallel planes of .
@article{AIF_1996__46_2_535_0, author = {Costa, Celso J. and Sim\"oes, Plinio A. Q.}, title = {Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {535-546}, doi = {10.5802/aif.1523}, mrnumber = {97e:53015}, zbl = {0853.53005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_2_535_0} }
Costa, Celso J.; Simöes, Plinio A. Q. Complete minimal surfaces of arbitrary genus in a slab of ${\mathbb {R}}^3$. Annales de l'Institut Fourier, Tome 46 (1996) pp. 535-546. doi : 10.5802/aif.1523. http://gdmltest.u-ga.fr/item/AIF_1996__46_2_535_0/
[1] Power series with Hadamard gaps and hyperbolic complete minimal surfaces, Duke Math. Journal, 68 (1993), 297-300. | MR 94d:53012 | Zbl 0787.53007
,[2] A complete minimal surfaces in R3 between two parallel planes, Ann. Math., 112 (1980), 203-206. | MR 82e:53087 | Zbl 0455.53004
and ,[3] A non orientable complete minimal surfaces in R3 between two parallel planes, Proc. Am. Math. Soc., 103 (1988). | MR 89f:53009 | Zbl 0662.53008
,[4] A survey of minimal surfaces, Van Nostrand, New York, 1969. | MR 41 #934 | Zbl 0209.52901
,[5] A cylindrical type complete minimal surfaces in a slab of R3, Bull. Sc. Math., III (1987), 241-245. | MR 88k:53019 | Zbl 0631.53012
and ,[6] Trigonometric series, Cambridge University Press, New York, 1968.
,