Une loi distributive est une façon de composer deux structures algébriques, disons et , en une structure algébrique plus complexe . Le but de ce travail est de comprendre les lois distributives en termes d’opérades. Le résultat central dit que si les opérades correspondant à et sont de Koszul, alors l’opérade correspondant à est aussi de Koszul. On donne une application à la cohomologie des espaces de configurations.
Distributive law is a way to compose two algebraic structures, say and , into a more complex algebraic structure . The aim of this paper is to understand distributive laws in terms of operads. The central result says that if the operads corresponding respectively to and are Koszul, then the operad corresponding to is Koszul as well. An application to the cohomology of configuration spaces is given.
@article{AIF_1996__46_2_307_0, author = {Markl, Martin}, title = {Distributive laws and Koszulness}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {307-323}, doi = {10.5802/aif.1516}, mrnumber = {97i:18008}, zbl = {0853.18005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_2_307_0} }
Markl, Martin. Distributive laws and Koszulness. Annales de l'Institut Fourier, Tome 46 (1996) pp. 307-323. doi : 10.5802/aif.1516. http://gdmltest.u-ga.fr/item/AIF_1996__46_2_307_0/
[1] Distributive laws, Lecture Notes in Mathematics, 80 (1969), 119-140. | MR 39 #2842 | Zbl 0186.02902
,[2] Distributive laws, bialgebras, and cohomology, Contemporary Mathematics, to appear.
and ,[3] A compactification of configuration spaces, Annals of Mathematics, 139 (1994), 183-225. | MR 95j:14002 | Zbl 0820.14037
and ,[4] Algebraic cohomology and deformation theory. In Deformation Theory of Algebras and Structures and Applications, pages 11-264. Kluwer, Dordrecht, 1988. | MR 90c:16016 | Zbl 0676.16022
and ,[5] Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint, 1993.
and ,[6] Koszul duality for operads, Duke Math. Journal, 76(1) (1994), 203-272. | MR 96a:18004 | Zbl 0855.18006
and ,[7] Models for operads, Communications in Algebra, 24(4) (1996), 1471-1500. | MR 96m:18012 | Zbl 0848.18003
,[8] The Geometry of Iterated Loop Spaces, volume 271 of Lecture Notes in Mathematics, Springer-Verlag, 1972. | MR 54 #8623b | Zbl 0244.55009
,