Nous donnons une classification des actions de groupes finis sur une surface ayant des quotients , du point de vue des points fixes. Il est montré qu’à part deux cas, chacun des groupes donne un unique type de points fixes.
We give a classification of finite group actions on a surface giving rise to quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
@article{AIF_1996__46_1_73_0, author = {Xiao, Gang}, title = {Galois covers between $K3$ surfaces}, journal = {Annales de l'Institut Fourier}, volume = {46}, year = {1996}, pages = {73-88}, doi = {10.5802/aif.1507}, mrnumber = {97b:14047}, zbl = {0845.14026}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1996__46_1_73_0} }
Xiao, Gang. Galois covers between $K3$ surfaces. Annales de l'Institut Fourier, Tome 46 (1996) pp. 73-88. doi : 10.5802/aif.1507. http://gdmltest.u-ga.fr/item/AIF_1996__46_1_73_0/
[D] Integral quadratic forms : applications to algebraic geometry, Seminaire Bourbaki, 611 (1983). | Numdam | MR 85f:14036 | Zbl 0535.10018
,[M] Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | MR 90b:32053 | Zbl 0705.14045
,[N] Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137. | Zbl 0454.14017
,