Soit une variété complexe, affine et lisse, qui, considérée comme variété analytique, a la -cohomologie singulière d’un point. Supposons que soit un groupe complexe algébrique agissant algébriquement sur . Nos résultats principaux sont les suivants : Si est semisimple, la fibre générique de l’application quotient contient une orbite dense. Si est connexe et réductif, l’action a des points fixes si .
Let be a smooth, affine complex variety, which, considered as a complex manifold, has the singular -cohomology of a point. Suppose that is a complex algebraic group acting algebraically on . Our main results are the following: if is semi-simple, then the generic fiber of the quotient map contains a dense orbit. If is connected and reductive, then the action has fixed points if .
@article{AIF_1995__45_5_1249_0, author = {Fankhauser, Martin}, title = {Fixed points for reductive group actions on acyclic varieties}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {1249-1281}, doi = {10.5802/aif.1495}, mrnumber = {97a:14047}, zbl = {0834.14027}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_5_1249_0} }
Fankhauser, Martin. Fixed points for reductive group actions on acyclic varieties. Annales de l'Institut Fourier, Tome 45 (1995) pp. 1249-1281. doi : 10.5802/aif.1495. http://gdmltest.u-ga.fr/item/AIF_1995__45_5_1249_0/
[Ba] A non-triangular action of Ga on A3, Jour. Pure Appl. Alg., 33 (1984), 1-5. | MR 85j:14086 | Zbl 0555.14019
,[BdS] Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helvetici, 23 (1949), 200-221. | MR 11,326d | Zbl 0034.30701
and ,[Bo] Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
,[Br] Introduction to compact transformation groups, pure and applied mathematics, Volume 46, Academic Press, New York and London, 1972. | MR 54 #1265 | Zbl 0246.57017
,[El] Canonical form and stationary subalgebras of points of general position for simple linear groups, Functional Analysis and its Applications, 6 (1972), 44-53. | MR 46 #3689 | Zbl 0252.22015
,[Fa] Reductive Group Actions on Acyclic Varieties, Thesis, Basel, 1994.
,[Hs] On the Geometric Weight System of Differentiable Compact Transformation Groups on Acyclic Manifolds, Inventiones Math., 12 (1971), 35-47. | MR 46 #916 | Zbl 0217.49401
,[HH70] Differentiable actions of compact connected classical groups : II, Annals of Mathematics, 92 (1970), 189-223. | MR 42 #420 | Zbl 0205.53902
and ,[HH74] Differentiable actions of compact connected Lie groups : III, Annals of Mathematics, 99 (1974), 220-256. | MR 49 #11550 | Zbl 0285.57026
and ,[HS82] Actions of compact connected Lie Groups with few orbit types, J. Reine Angew. Math., 334 (1982), 1-26. | MR 83m:57032 | Zbl 0476.22010
and ,[HS86] Actions of compact connected Lie groups on acyclic manifolds with low dimensional orbit spaces, J. Reine Angew. Math., 369 (1986), 21-39. | MR 87m:57041 | Zbl 0583.57025
and ,[Hu] Linear Algebraic Groups, GTM 21, Springer-Verlag, New York-Heidelberg-Berlin, 1987.
,[Kr84] Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, band D1, Vieweg, Braunschweig, 1984. | MR 86j:14006 | Zbl 0569.14003
,[Kr89a] G-vector bundles and the linearization problem, Contemporary Mathematics, 10 (1989), 111-123. | MR 90j:14062 | Zbl 0703.14009
,[Kr89b] Algebraic automorphisms of affine space in : Topological Methods in Algebraic Transformation Groups, Progress in Mathematics, Volume 80, Birkhäuser-Verlag, Boston-Basel-Berlin, 1989, pp. 81-106. | MR 91g:14044 | Zbl 0719.14030
,[KP] Semisimple group actions on three dimensional affine space are linear, Comment. Math. Helvetici, 60 (1985), 466-479. | MR 87a:14039 | Zbl 0645.14020
and ,[KS] Reductive group actions with one-dimensional quotient, Publications Mathématiques IHES, 76 (1992), 1-97. | Numdam | MR 94e:14065 | Zbl 0783.14026
and ,[Lu] Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105. | Numdam | MR 49 #7269 | Zbl 0286.14014
,[Ol] Weight systems for SO(3)-actions, Annals of Mathematics, 110 (1979), 227-241. | MR 80m:57036 | Zbl 0465.57017
,[PR] Finite-order algebraic automorphisms of affine varieties, Comment. Math. Helvetici, 61 (1986), 203-221. | MR 88a:57073 | Zbl 0612.14046
and ,[SK] A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155. | MR 55 #3341 | Zbl 0321.14030
and ,[Sch] Exotic algebraic group actions, C R. Acad. Sci. Paris, 309 (1989), 89-94. | MR 91b:14066 | Zbl 0688.14040
,[Ve] Caractéristique d'Euler-Poincaré, Bull. Soc. Math. France, 176 (1973), 441-445. | Numdam | MR 50 #8580 | Zbl 0302.57007
,[Vi] The Weyl Group of a graded Lie Algebra, Izv. Akad. Nauk SSSR, 40 (1976), 463-495. | Zbl 0371.20041
,