Nous obtenons des estimations de la forme
dans des espaces de Sobolev avec poids. Nous montrons que le résultat est optimal. Ici est un opérateur différentiel, étant le composé de plusieurs opérateurs de type maximal liés avec et .
We prove sharp weighted inequalities of the form
where is a differential operator and is a combination of maximal type operator related to and to .
@article{AIF_1995__45_3_809_0, author = {P\'erez, Carlos}, title = {Sharp $L^p$-weighted Sobolev inequalities}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {809-824}, doi = {10.5802/aif.1475}, mrnumber = {96m:42032}, zbl = {0820.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_3_809_0} }
Pérez, Carlos. Sharp $L^p$-weighted Sobolev inequalities. Annales de l'Institut Fourier, Tome 45 (1995) pp. 809-824. doi : 10.5802/aif.1475. http://gdmltest.u-ga.fr/item/AIF_1995__45_3_809_0/
[A] Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297 (1986), 73-94. | MR 88m:31011 | Zbl 0656.31012
,[AP] Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41-1 (1991), 117-135. | Numdam | MR 92m:35074 | Zbl 0741.35012
and ,[CWW] Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helvetici, 60 (1985), 217-286. | MR 87d:42027 | Zbl 0575.42025
, and ,[CS] Unique continuation for Δ + v and the Fefferman-Phong class, Trans. Math. Soc., 318 (1990), 275-300. | MR 90f:35050 | Zbl 0702.35034
and ,[CW] Lp estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. | MR 87d:42028 | Zbl 0578.46024
and ,[CR] Uniform L2-weighted Sobolev inequalities, Trans. Amer. Math. Soc., 318 (1990), 275-300.
and ,[F] The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. | MR 85f:35001 | Zbl 0526.35080
,[FS1] Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115. | MR 44 #2026 | Zbl 0222.26019
and ,[GCRdF] Weighted norm inequalities and related topics, North Holland Math. Studies, 116, North Holland, Amsterdam, 1985. | MR 87d:42023 | Zbl 0578.46046
and ,[LN] Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators, Lecture Notes in Mathematics, 1494 (1990), 131-141. | MR 1187073 | MR 94c:46066 | Zbl 0786.46034
and ,[Ma] Sobolev spaces, Springer-Verlag, Berlin, 1985. | MR 817985 | MR 87g:46056 | Zbl 0692.46023 | Zbl 0727.46017
,[O] Integral transforms and tensor products on Orlicz spaces and Lp,q spaces, J. d'Anal. Math., 21 (1968), 4-276. | MR 626853 | MR 58 #30125 | Zbl 0182.16703
,[P1] On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights, to appear in the Proceedings of the London Mathematical Society. | MR 1327936 | Zbl 0829.42019
,[P2] Weighted norm inequalities for singular integral operators, J. of the London Math. Soc. (2), 49 (1994), 296-308. | MR 1260114 | MR 94m:42037 | Zbl 0797.42010
,[P3] Two weighted norm inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994). | MR 1291534 | MR 95m:42028 | Zbl 0809.42007
,[S1] Weighted norm inequalities for fractional maximal operators, Proc. C.M.S., 1 (1981), 283-309. | MR 670111 | MR 83k:42020a | Zbl 0546.42018
,[S2] A characterization of two weight norm inequalities for fractional fractional and Poisson integrals, Trans. Amer. Math. Soc., 308 (1988), 533-545. | MR 930072 | MR 89d:26009 | Zbl 0665.42023
,[SW] Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. | MR 1175693 | MR 94i:42024 | Zbl 0783.42011
and ,[St1] Note on the class L log L, Studia Math., 32 (1969), 305-310. | MR 247534 | MR 40 #799 | Zbl 0182.47803
,[St2] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). | MR 290095 | MR 44 #7280 | Zbl 0207.13501
,[Wil] Weighted norm inequalities for the continuos square functions, Trans. Amer. Math. Soc., 314 (1989), 661-692. | MR 972707 | MR 91e:42025 | Zbl 0689.42016
,