Soit une variété affine conique factorielle sur un corps algébriquement clos de caractéristique zéro. Nous considérons les actions équidimensionnelles, algébriques, et stables d’un tore algébrique sur qui sont compatibles avec la structure conique. Nous montrons que de telles actions sont colibres et que les nilcônes de qui lui sont associés sont des intersections complètes.
Let be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on compatible with the conical structure. We show that such actions are cofree and the nullcones of associated with them are complete intersections.
@article{AIF_1995__45_3_681_0, author = {Nakajima, Haruhisa}, title = {Equidimensional actions of algebraic tori}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {681-705}, doi = {10.5802/aif.1470}, mrnumber = {96e:14055}, zbl = {0823.14035}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_3_681_0} }
Nakajima, Haruhisa. Equidimensional actions of algebraic tori. Annales de l'Institut Fourier, Tome 45 (1995) pp. 681-705. doi : 10.5802/aif.1470. http://gdmltest.u-ga.fr/item/AIF_1995__45_3_681_0/
[BK] Über Bahenen und deren Deformationen bei linearen Aktionen reductiver Gruppen, Comment. Math. Helvetici, 54 (1979), 1-104. | MR 82m:14027 | Zbl 0395.14013
, ,[CM] Cohen-Macaulay Rings, Cambridge Studies Advanced Math., 37, Cambridge, Cambridge Univ. 1993. | MR 95h:13020 | Zbl 0788.13005
, ,[GM] Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik, D1, Braunschweig-Wiesbaded, Vieweg, 1984. | MR 86j:14006 | Zbl 0569.14003
,[H] Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163. | MR 81b:14025 | Zbl 0401.14006
,[HR] Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175. | MR 50 #311 | Zbl 0289.14010
, ,[K] Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. | MR 81i:17005 | Zbl 0431.17007
,[L] Slices étales, Bull. Soc. Math. France Mémoire, 33 (1973), 81-105. | Numdam | MR 49 #7269 | Zbl 0286.14014
,[LR] Local Rings, Interscience Tracts in Pure & Applied Math., 13, New York, Wiley, 1962. | Zbl 0123.03402
,[M] Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60 (1976), 45-48. | MR 55 #340 | Zbl 0344.13004
,[N1] Relative invariants of finite groups, J. Algebra, 79 (1982), 218-234. | MR 84c:13006 | Zbl 0499.20029
,[N2] Class groups of localities of rings of invariants of reductive algebraic groups, Math. Zeit., 182 (1983), 1-15. | MR 84j:20043 | Zbl 0488.13003
,[N3] Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. | MR 87h:20069 | Zbl 0575.20036
,[N4] Equidimensional toric extensions of symplectic groups, Proc. Japan Acad., 70 Ser. A (1994), 74-79. | MR 95d:20074 | Zbl 0819.20046
,[N5] Semisimple algebraic groups admitting equidimensional toric extensions, in preparation.
,[P1] Representations with a free module of covariants, Func. Anal. Appl., 10 (1976), 242-244. | MR 54 #5255 | Zbl 0365.20053
,[P2] Modern developments in invariant theory, Proc. of International Congress of Mathematicians (Berkeley 1986) Vol. 1, 394-406, Providence, Amer. Math. Soc., 1987. | Zbl 0679.14024
,[P3] Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Monographs 100, Providence, Amer. Math. Soc., 1992. | MR 93g:14054 | Zbl 0754.13005
,[S] Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-136. | Numdam | MR 81h:57024 | Zbl 0449.57009
,[TE] Toroidal Embeddings I, Lecture Notes in Math., 339, Berlin Heidelberg New York, Springer, 1973. | MR 49 #299 | Zbl 0271.14017
, , , ,[W1] A proof of the Popov conjecture for tori, Proc. of Amer. Math. Soc., 114 (1992), 839-845. | MR 92f:14049 | Zbl 0754.20013
,[W2] Equidimensional varieties and associated cones, J. Algebra, 159 (1993), 47-53. | MR 94f:14046 | Zbl 0808.14039
,