Soit une courbe sur un corps et soit . Nous définissons un cycle canonique . Supposons que est un corps de nombres et que a un modèle semi-stable sur les entiers de dont les composantes irréductibles des fibres sont lisses. Nous construisons un modèle régulier de et vérifions que l’accouplement de Beilinson-Bloch, , est bien défini, où et sont les correspondances. Si est une courbe modulaire et et sont les opérateurs de Hecke convenables, on conjecture une formule liant la dérivée d’une fonction avec l’accouplement de Beilinson-Bloch.
Let be a curve over a field with a rational point . We define a canonical cycle . Suppose that is a number field and that has semi-stable reduction over the integers of with fiber components non-singular. We construct a regular model of and show that the height pairing is well defined where and are correspondences. The paper ends with a brief discussion of heights and -functions in the case that is a modular curve.
@article{AIF_1995__45_3_649_0, author = {Gross, Benedict H. and Schoen, Chad}, title = {The modified diagonal cycle on the triple product of a pointed curve}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {649-679}, doi = {10.5802/aif.1469}, mrnumber = {96e:14008}, zbl = {0822.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_3_649_0} }
Gross, Benedict H.; Schoen, Chad. The modified diagonal cycle on the triple product of a pointed curve. Annales de l'Institut Fourier, Tome 45 (1995) pp. 649-679. doi : 10.5802/aif.1469. http://gdmltest.u-ga.fr/item/AIF_1995__45_3_649_0/
[Al Kl] Introduction to Grothendieck Duality Theory, Lect. Notes in Math. 146, Springer-Verlag, New York (1970) | MR 43 #224 | Zbl 0215.37201
and ,[Be1] Higher regulators and values of L-functions, J. Soviet Math., 30 (1985), 2036-2070. | Zbl 0588.14013
,[Be2] Height pairing between algebraic cycles. In : Current trends in arithmetic algebraic geometry, Contemp. Math., vol. 67 (1987), 1-24. | MR 89g:11052 | Zbl 0624.14005
,[Bl] Height pairing for algebraic cycles, J. Pure Appl. Algebra, 34 (1984), 119-145. | MR 86h:14015 | Zbl 0577.14004
,[Ce] C is not algebraically equivalent to C- in its Jacobian, Annals of Math., 117 (1983), 285-291. | MR 84f:14005 | Zbl 0538.14024
,[Co vG] Note on curves on a Jacobian, Compositio Math., 88 (1993), 333-353. | Numdam | MR 95j:14030 | Zbl 0802.14002
, and ,[De1] Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. | Numdam | Zbl 0237.14003
,[De2] La conjecture de Weil II, Publ. Math. IHES, 52 (1981), 273-308.
,[De3] Formes modulaires et représentations l-adiques, Sém. Bourbaki, Exp. 355, Springer Lecture Notes, 179 (1969), 139-172. | Numdam | Zbl 0206.49901
,[DeMu] The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-110. | Numdam | MR 41 #6850 | Zbl 0181.48803
, and ,[DeRa] Les schémas de modules de courbes elliptiques, in : Modular forms of one variable II, Springer Lecture Notes, 349 (1973), 143-316. | MR 49 #2762 | Zbl 0281.14010
, and ,[Des] Réduction semi-stable, in : Sém. sur les pinceaux de courbes de genre au moins deux, Astérisque, 86 (1981). | Zbl 0505.14008
,[Fu] Intersection theory, Springer Ergebnisse 3 Folge, Band 2 (1984). | MR 85k:14004 | Zbl 0541.14005
,[GiSo] Intersection theory using Adams operations, Inv. Math., 90 (1987), 243-278. | MR 89d:14005 | Zbl 0632.14009
, and ,[GKu] Heights and the central critical values of triple product L-functions, Compositio Math., 81 (1992), 143-209. | Numdam | MR 93g:11047 | Zbl 0807.11027
, and ,[Ha] Algebraic Geometry, Springer, 1977. | MR 57 #3116 | Zbl 0367.14001
,[Mi] Étale cohomology, Princeton Univ., Press, 1980. | MR 81j:14002 | Zbl 0433.14012
,[Mu] Rational equivalence of zero cycles on surfaces, J. Math., Kyoto Univ., 9 (1969), 195-204. | MR 40 #2673 | Zbl 0184.46603
,[Né] Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math., 82 (1965), 249-331. | MR 31 #3424 | Zbl 0163.15205
,[Sch] Motives for modular forms, Inv. Math., 100 (1990), 419-430. | MR 91e:11054 | Zbl 0760.14002
,[Si] The arithmetic of elliptic curves, Springer Graduate Texts in Math., 106 (1986). | MR 87g:11070 | Zbl 0585.14026
,[Ta1] Endomorphisms of abelian varieties over finite fields., Inv. Math., 2 (1966), 134-144. | MR 34 #5829 | Zbl 0147.20303
,[Ta2] Conjectures on algebraic cycles in l-adic cohomology. In : Motives, Proc. of Symposia in Pure Math., 55, Part 1 (1994), 71-83. | MR 95a:14010 | Zbl 0814.14009
,[Ve] Classe d'homologie associée à un cycle, Astérisque, 36-37 (1976), 101-151. | Zbl 0346.14005
,